Понятия информации, сообщения, сигнала. Виды сигналов и их основные характеристики. Виды электрических сигналов Что такое сигнал виды сигналов

Сигнал определяется как напряжение или ток, который может быть передан как сообщение или как информация. По своей природе все сигналы являются аналоговыми, будь то сигнал постоянного илипеременного тока, цифровой или импульсный. Тем не менее, принято делать различие между аналоговыми и цифровыми сигналами.

Цифровым сигналом называется сигнал, определённым образом обработанный и преобразованный в цифры. Обычно эти цифровые сигналы связаны с реальными аналоговыми сигналами, но иногда между ними и нет связи. В качестве примера можно привести передачу данных в локальных вычислительных сетях (LAN) или в других высокоскоростных сетях.

В случае цифровой обработки сигнала (ЦОС) аналоговый сигнал преобразуется в двоичную форму устройством, которое называется аналого-цифровым преобразователем (АЦП). На выходе АЦП получается двоичное представление аналогового сигнала, которое затем обрабатывается арифметическим цифровым сигнальным процессором (DSP). После обработки содержащаяся в сигнале информация может быть преобразована обратно в аналоговую форму с использованием цифро-аналогового преобразователя (ЦАП).

Другой ключевой концепцией в определении сигнала является тот факт, что сигнал всегда несет некоторую информацию. Это ведет нас к ключевой проблеме обработки физических аналоговых сигналов — проблеме извлечения информации.

Цели обработки сигналов.

Главная цель обработки сигналов заключается в необходимости получения содержащейся в них информации. Эта информация обычно присутствует в амплитуде сигнала (абсолютной или относительной), в частоте или в спектральном составе, в фазе или в относительных временных зависимостях нескольких сигналов.

Как только желаемая информация будет извлечена из сигнала, она может быть использована различными способами. В некоторых случаях желательно переформатировать информацию, содержащуюся в сигнале.

В частности, изменение формата сигнала происходит при передаче звукового сигнала в телефонной системе с многоканальным доступом и частотным разделением (FDMA). В этом случае используются аналоговые методы, чтобы разместить несколько голосовых каналов в частотном спектре для передачи через радиорелейную станцию СВЧ диапазона, коаксиальный или оптоволоконный кабель.

В случае цифровой связи аналоговая звуковая информация сначала преобразуется в цифровую с использованием АЦП. Цифровая информация, представляющая индивидуальные звуковые каналы, мультиплексируется во времени (многоканальный доступ с временным разделением, TDMA) и передается по последовательной цифровой линии связи (как в ИКМ-системе).

Еще одна причина обработки сигналов заключается в сжатии полосы частот сигнала (без существенной потери информации) с последующим форматированием и передачей информации на пониженных скоростях, что позволяет сузить требуемую полосу пропускания канала. В высокоскоростных модемах и системах адаптивной импульсно-кодовой модуляции (ADPCM) широко используются алгоритмы устранения избыточности данных (сжатия), так же как и в цифровых системах мобильной связи, системах записи звука MPEG, в телевидении высокой четкости (HDTV).

Промышленные системы сбора данных и системы управления используют информацию, полученную от датчиков, для выработки соответствующих сигналов обратной связи, которые, в свою очередь, непосредственно управляют процессом. Обратите внимание, что эти системы требуют наличия как АЦП и ЦАП, так и датчиков, устройств нормализации сигнала (signal conditioners) и DSP (или микроконтроллеров).

В некоторых случаях в сигнале, содержащем информацию, присутствует шум, и основной целью является восстановление сигнала. Такие методы, как фильтрация, автокорреляция, свертка и т.д., часто используются для выполнения этой задачи и в аналоговой, и в цифровой областях.

ЦЕЛИ ОБРАБОТКИ СИГНАЛОВ
  • Извлечение информации о сигнале (амплитуда, фаза, частота, спектральные составляющие,временные соотношения)
  • Преобразование формата сигнала (телефония с разделением каналов FDMA, TDMA, CDMA)
  • Сжатие данных (модемы, сотовые телефоны, телевидение HDTV, сжатие MPEG)
  • Формирование сигналов обратной связи (управление промышленными процессами)
  • Выделение сигнала из шума (фильтрация, автокорреляция, свертка)
  • Выделение и сохранение сигнала в цифровом виде для последующей обработки (БПФ)

Формирование сигналов

В большинстве приведенных ситуаций (связанных с использованием DSP-технологий), необходимы как АЦП, так и ЦАП. Тем не менее, в ряде случаев требуется только ЦАП, когда аналоговые сигналы могут быть непосредственно сгенерированы на основе DSP и ЦАП. Хорошим примером являются дисплеи с разверткой видеоизображения, в которых сгенерированный в цифровой форме сигнал управляет видеоизображением или блоком RAMDAC (преобразователем массива пиксельных значений из цифровой в аналоговую форму).

Другой пример — это искусственно синтезируемые музыка и речь. В действительности, при генерации физических аналоговых сигналов с использованием только цифровых методов полагаются на информацию, предварительно полученную из источников подобных физических аналоговых сигналов. В системах отображения данные на дисплее должны донести соответствующую информацию оператору. При разработке звуковых систем задаются статистическими свойствами генерируемых звуков, которые были предварительно определены с помощью широкого использования методов ЦОС (источник звука, микрофон, предварительный усилитель, АЦП и т.д.).

Методы и технологии обработки сигналов

Сигналы могут быть обработаны с использованием аналоговых методов (аналоговой обработки сигналов, или ASP), цифровых методов (цифровой обработки сигналов, или DSP) или комбинации аналоговых и цифровых методов (комбинированной обработки сигналов, или MSP). В некоторых случаях выбор методов ясен, в других случаях нет ясности в выборе и принятие окончательного решения основывается на определенных соображениях.

Что касается DSP, то главное отличие его от традиционного компьютерного анализа данных заключается в высокой скорости и эффективности выполнения сложных функций цифровой обработки, таких как фильтрация, анализ с использованием и сжатие данных в реальном масштабе времени.

Термин "комбинированная обработка сигналов" подразумевает, что системой выполняется и аналоговая, и цифровая обработка. Такая система может быть реализована в виде печатной платы, гибридной интегральной схемы (ИС) или отдельного кристалла с интегрированными элементами. АЦП и ЦАП рассматриваются как устройства комбинированной обработки сигналов, так как в каждом из них реализованы и аналоговые, и цифровые функции.

Недавние успехи технологии создания микросхем с очень высокой степенью интеграции (VLSI) позволяют осуществлять комплексную (цифровую и аналоговую) обработку на одном кристалле. Сама природа ЦОС подразумевает, что эти функции могут быть выполнены в режиме реального масштаба времени.

Сравнение аналоговой и цифровой обработки сигналов

Сегодняшний инженер стоит перед выбором надлежащей комбинации аналоговых и цифровых методов для решения задачи обработки сигналов. Невозможно обработать физические аналоговые сигналы, используя только цифровые методы, так как все датчики (микрофоны, термопары, пьезоэлектрические кристаллы, головки накопителя на магнитных дисках и т.д.) являются аналоговыми устройствами.

Некоторые виды сигналов требуют наличия цепей нормализации для дальнейшей обработки сигналов как аналоговым так и цифровым методом. Цепи нормализации сигнала — это аналоговые процессоры, выполняющие такие функции как усиление, накопление (в измерительных и предварительных (буферных) усилителях), обнаружение сигнала на фоне шума (высокоточными усилителями синфазного сигнала, эквалайзерами и линейными приемниками), динамическое сжатие диапазона (логарифмическими усилителями, логарифмическими ЦАП и усилителями с программируемым коэффициентом усиления) и фильтрация (пассивная или активная).

Несколько методов реализации процесса обработки сигналов показано на рисунке 1. В верхней области рисунка изображен чисто аналоговый подход. В остальных областях изображена реализация DSP. Обратите внимание, что, как только выбрана DSP технология, следующим решением должно быть определение местоположения АЦП в тракте обработки сигнала.

ОБРАБОТКА АНАЛОГОВЫХ И ЦИФРОВЫХ СИГНАЛОВ

Рисунок 1. Способы обработки сигналов

Вообще, поскольку АЦП перемещен ближе к датчику, большая часть обработки аналогового сигнала теперь производится АЦП. Увеличение возможностей АЦП может выражаться в увеличении частоты дискретизации, расширении динамического диапазона, повышении разрешающей способности, отсечении входного шума, использовании входной фильтрации и программируемых усилителей (PGA), наличии источников опорного напряжения на кристалле и т.д. Все упомянутые дополнения повышают функциональный уровень и упрощают систему.

При наличии современных технологий производства ЦАП и АЦП с высокими частотами дискретизации и разрешающими способностями существенный прогресс достигнут в интеграции все большего числа цепей непосредственно в АЦП /ЦАП.

В сфере измерений, например, существуют 24-битные АЦП со встроенными программируемыми усилителями (PGA), которые позволяют оцифровывать полномасштабные мостовые сигналы 10 mV непосредственно, без последующей нормализации (например серия AD773x).

На голосовых и звуковых частотах распространены комплексные устройства кодирования-декодирования&nbp;— кодеки (Analog Front End, AFE), которые имеют встроенную в микросхему аналоговую схему, удовлетворяющую минимуму требований к внешним компонентам нормализации (AD1819B и AD73322).

Существуют также видео-кодеки (AFE) для таких задач, как обработка изображения с помощью ПЗС (CCD), и другие (например, серии AD9814, AD9816, и AD984X).

Пример реализации

В качестве примера использования DSP сравним аналоговый и цифровой фильтры низкой частоты (ФНЧ), каждый с частотой среза 1 кГц.

Цифровой фильтр реализован в виде типовой цифровой системы, показанной на рисунок 2. Обратите внимание, что в диаграмме принято несколько неявных допущений. Во -первых, чтобы точно обработать сигнал, принимается, что тракт АЦП /ЦАП обладает достаточными значениями частоты дискретизации, разрешающей способности и динамического диапазона. Во -вторых, для того, чтобы закончить все свои вычисления в пределах интервала дискретизации (1/f s), устройство ЦОС должно иметь достаточное быстродействие. В -третьих, на входе АЦП и выходе ЦАП сохраняется потребность в аналоговых фильтрах ограничения и восстановления спектра сигнала (anti-aliasing filter и anti-imaging filter), хотя требования к их производительности невелики. Приняв эти допущения, можно сравнить цифровой и аналоговый фильтры.



Рисунок 2. Структурная схема цифрового фильтра

Требуемая частота среза обоих фильтров — 1 кГц. Аналоговое преобразование реализуется первого рода шестого порядка (характеризуется наличием пульсаций коэффициента передачив полосе пропускания и отсутствием пульсаций вне полосы пропускания). Его характеристики представлены на рисунке 2. На практике этот фильтр может быть представлен тремя фильтрами второго порядка, каждый из которых построен на операционном усилителе и нескольких и конденсаторах. С помощью современных систем автоматизированного проектирования (САПР) фильтров создать фильтр шестого порядка достаточно просто, но чтобы удовлетворить техническим требованиям по неравномерности характеристики 0,5 дБ, требуется точный подбор компонентов.

Представленный же на рисунке 2 цифровой КИХ-фильтр со 129 коэффициентами имеет неравномерность характеристики всего 0,002 дБ в полосе пропускания, линейную фазовую характеристику и намного более крутой спад. На практике такие характеристики невозможно реализовать с использованием аналоговых методов. Другое очевидное преимущество схемы состоит в том, что цифровой фильтр не требует подбора компонентов и не подвержен дрейфу параметров, так как частота синхронизации фильтра стабилизирована кварцевым резонатором. Фильтр со 129 коэффициентами требует 129 операций умножения с накоплением (MAC) для вычисления выходного отсчёта. Эти вычисления должны быть закончены в пределах интервала дискретизации 1/fs, чтобы обеспечить работу в реальном масштабе времени. В этом примере частота дискретизации равна 10 кГц, поэтому для обработки достаточно 100 мкс, если не требуется производить существенных дополнительных вычислений. Семейство DSP ADSP-21xx может закончить весь процесс умножения с накоплением (и другие функции, необходимые для реализации фильтра) за один командный цикл. Поэтому фильтр со 129 коэффициентами требует быстродействия более 129/100 мкс = 1,3 миллиона операций с секунду (MIPS). Существующие DSP имеют намного большее быстродействие и, таким образом, не являются ограничивающим фактором для этих приложений. Быстродействие серии 16-разрядных ADSP-218x с фиксированной точкой достигает 75MIPS. В листинге 1 приведен ассемблерный код, реализующий фильтр на DSP процессорах семейства ADSP-21xx. Обратите внимание, что фактические строки исполняемого кода помечены стрелками; остальное — это комментарии.


Рисунок 3. аналогового и цифрового фильтров

Конечно, на практике имеется много других факторов, рассматриваемых при сравнительной оценке аналоговых и цифровых фильтров или аналоговых и цифровых методов обработки сигнала вообще. В современных системах обработки сигналов комбинируются аналоговые и цифровые методы реализации желаемой функции и используются преимущества лучших методов, как аналоговых, так и цифровых.

ПРОГРАММА НА АССЕМБЛЕРЕ:
FIR ФИЛЬТР ДЛЯ ADSP-21XX (ОДИНАРНАЯ ТОЧНОСТЬ)

MODULE fir_sub; { Подпрограмма КИХ фильтра Параметры вызова подпрограммы I0 --> Наиболее старые данные в линии задержки I4 --> Начало таблицы коэффициентов фильтра L0 = Длина фильтра (N) L4 = Длина фильтра (N) M1,M5 = 1 CNTR = Длина фильтра - 1 (N-1) Возвращаемые значения MR1 = Результат суммирования (округлённый и ограниченный) I0 --> Наиболее старые данные в линии задержки I4 --> Начало таблицы коэффициентов фильтра Изменяемые регистры MX0,MY0,MR Время работы (N - 1) + 6 cycles = N + 5 cycles Все коэффициенты записаны в формате 1.15 } .ENTRY fir; fir: MR=0, MX0=DM(I0,M1), MY0=PM(I4,M5) CNTR = N-1; DO convolution UNTIL CE; convolution: MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M5); MR=MR+MX0*MY0(RND); IF MV SAT MR; RTS; .ENDMOD; ОБРАБОТКА СИГНАЛОВ В РЕАЛЬНОМ ВРЕМЕНИ

  • Цифровая обработка сигналов;
    • Ширина спектра обрабатываемого сигнала ограничена частотой дискретизации АЦП/ЦАП
      • Помните о критерии Найквиста и теореме Котельникова
    • ограничен разрядностью АЦП /ЦАП
    • Производительность процессора DSP ограничивает объем обработки сигнала, так как:
      • Для работы в реальном масштабе времени все вычисления, производимые сигнальным процессором, должны быть закончены в течение интервала дискретизации, равного 1/f s
  • Не забывайте об аналоговой обработке сигнала
    • высокочастотной /радиочастотной фильтрации, модуляции, демодуляции
    • аналоговых ограничивающих и восстанавливающих спектр фильтрах (обычно ФНЧ) для АЦП и ЦАП
    • там, где диктуют здравый смысл и стоимость реализации

Литература:

Вместе со статьей "Виды сигналов" читают:

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Аналоговые и дискретные сигналы

1. Сигнал, непрерывно изменяющийся во времени так, что в любой момент времени можно измерить его значение, называется аналоговым.

2. Сигнал, дискретно изменяющийся во времени так, что его значения определены только в счетные (с определенным шагом) моменты времени, принято называть дискретным.

3. В цепях дискретного времени (с дискретными сигналами) вход и выход всегда имеет общий провод, соединенный с землей. Поэтому его не показывают.

4. Преобразования: аналоговый сигнал дискретный сигнал осуществляют с помощью ключа дискретизатора и ФНЧ.

5. Дискретные сигналы характеризуют скоростью передачи дискретных значений.

Сигнал в виде выборок называют амплитудно импульсным модулированным.

Скорость передачи дискретных значений совпадает с частотой дискретизации.

2. Дискретные и цифровые сигналы

1. Цифровые (двоичные) сигналы являются частным случае дискретных, когда для амплитуды любого импульса допустимы лишь два значения: «0» или «1», соответственно токовой и бестоковой посылки.

2. Переходы дискретный сигнал цифровой сигнал осуществляются с помощью цифро-аналогового преобразователя (ЦАП) и аналогово-цифрового преобразователя (АЦП).

3. АЦП осуществляет преобразование в два приема:

каждое дискретное значение сигнала переводится из десятичной в двоичную систему исчисления;

двоичному числу ставится в соответствие двоичный сигнал, имеющий два положения «0» и «1».

5 = 12 2 + 02 1 + 12 0 101

4. Цифровые сигналы характеризуются скоростью передачи в бит/с.

Бит - минимальное сообщение, означающее выбор одного из двух значений: «0» и «1».

1 байт равен 8 бит.

5. На передачу через ЛЭЦ 1 бит/с обычно требуется 1 Гц полосы частот.

3. Понятие временного разделения каналов

1. Цепь, имеющая несколько входов и выходов и характеризуемая функциональным назначением (усилитель, фильтр и т.д.), называется системой.

2. Система временного разделения каналов основана на придании каждому абоненту своего индивидуального времени работы.

3. A. Индивидуальное время работы означает наличие индивидуальных ключей-дискретизаторов.

Б. Через линию передаются цифровые сигналы.

УУ - управляющее ключами устройство.

В. Для коммутации к АТС подводят входящие и исходящие линии абонентов.

При пространственной коммутации номера входящей и исходящей линий одинаковы, при временной - разные.

ЗУ - задерживающее (на несколько интервалов) устройство.

4. Цифровой фильтр и его элементы

1. В дискретных сигналах информацию несет огибающая импульсов x(n), зависящая от номера отсчета n.

2. Операции над огибающей импульсов осуществляются с помощью устройства, называемого цифровым фильтром.

3. Цифровой фильтр реализуется средствами вычислительной техники и состоит из трех элементов:

сигнал фильтр аналоговый дискретный

4. Синтез цифрового фильтра складывается из трех этапов:

А. Отыскивается аналоговое устройство, осуществляющее нужную операцию над огибающей сигнала.

Б. Импульсная характеристика аналогового устройства дискретизи - руется в виде последовательности импульсов с огибающей g(n).

В. Цифровой фильтр реализуется в виде модели.

Размещено на Allbest.ru

...

Подобные документы

    Основные понятия и определения систем передачи дискретных сообщений. Сигнальные созвездия при АФМ и квадратурная АМ. Спектральные характеристики сигналов с АФМ. Модулятор и демодулятор сигналов, помехоустойчивость когерентного приема сигналов с АФМ.

    дипломная работа , добавлен 09.07.2013

    Фильтрация сигналов на фоне помех в современной радиотехнике. Понятие электрического фильтра как цепи, обладающей избирательностью реакции на внешнее воздействие. Классификация фильтров по типу частотных характеристик. Этапы проектирования фильтра.

    курсовая работа , добавлен 23.01.2010

    Принципы проектирования электрического фильтра и усилителя напряжения. Анализ спектра сложного периодического сигнала. Оценка прохождения входного сигнала через радиотехнические устройства. Разработка схем электрического фильтра и усилителя напряжения.

    курсовая работа , добавлен 28.03.2015

    Понятие и функциональные особенности активного фильтра, его внутренняя структура и элементы, предъявляемые требования, частотные характеристики. Определение параметров и порядка фильтра-прототипа, его передаточной функции. Настройка частоты полюса.

    курсовая работа , добавлен 29.12.2013

    презентация , добавлен 19.08.2013

    Определение операторной функции ARC-фильтра. Расчет амплитудного и фазного спектров реакции. Построение графика функции времени реакции цепи. Определение переходной и импульсной функции фильтра. Реакция цепи на непериодический прямоугольный импульс.

    курсовая работа , добавлен 30.08.2012

    Характер и основные причины повреждений в кабельных линиях, порядок и методы их определения: дистанционные, кратковременной дуги, волновые, измерения частичных разрядов. Виды зондирующих сигналов. Помехи импульсной рефлектометрии и борьба с ними.

    контрольная работа , добавлен 20.03.2011

    Назначение фильтрующих цепей в диапазоне СВЧ. Полосовой фильтр из полуволновых разомкнутых резонаторов. Возможные варианты схем фильтра-прототипа. Структура коаксиальной линии. График вероятности безотказной работы полосового фильтра, расчет допусков.

    курсовая работа , добавлен 24.02.2014

    Формула для сигнала при гармонической модуляции. Амплитуда и частота несущего колебания. Компьютерное моделирование ЧМ-сигналов с помощью программного пакета Electronics Workbench. Спектр частотно-модулированного сигнала. Частота модулирующего колебания.

    лабораторная работа , добавлен 04.06.2015

    Общие свойства линейных цепей с постоянными параметрами. Рассмотрение преобразования сигналов линейными цепями в частотной и временной области. Простейшие цепи и их характеристики: фильтры интегрирующего, дифференцирующего и частотно-избирательного типа.

Проведем классификацию сигналов. Сигналы подразделяют на:

    детерминированные;

    случайные.

Детерминированными называют сигналы, которые точно определены в любые моменты времени. В отличие от них некоторые параметры случайных сигналов заранее предсказать невозможно.

Строго говоря, так как выдача источником сообщений (например, датчиком) того или иного конкретного сообщения случайна, то предсказать точно изменение значений параметров сигнала невозможно. Следовательно, сигнал принципиально имеет случайный характер. Детерминированные сигналы имеют весьма ограниченное самостоятельное значение только для целей наладки и регулировки информационной и вычислительной техники, играя роль эталонов.

В зависимости от структуры параметров сигналы подразделяются на:

    дискретные;

    непрерывные;

    дискретно-непрерывные.

Сигнал считают дискретным по данному параметру, если число значений, которое может принимать этот параметр, конечно (счетно). В противном случае сигнал считают непрерывным по данному параметру. Сигнал, дискретный по одному параметру и непрерывный по другому, называют дискретно-непрерывным.

В соответствии с этим выделяют следующие виды сигналов (рис. 1.4.):

а) Непрерывные по уровню и времени (аналоговые) – это сигналы на выходе микрофонов, датчиков температуры, давления и т.д.

б) Непрерывные по уровню, но дискретные по времени. Такие сигналы получают в результате дискретизации по времени аналоговых сигналов.

Рис. 1.4. Разновидности сигналов.

Под дискретизацией подразумевают преобразование функции непрерывного времени (в частности непрерывного сигнала) в функцию дискретного времени, представляющую последовательность величин, называемых координатами, выборками или отсчетами (sample value).

Наибольшее распространение получил метод дискретизации, при котором роль координат выполняют мгновенные значения непрерывной функции (сигнала), взятые в определенные моменты времени S(t i), где i=1,…,n. Временные интервалы между этими моментами называют интервалами выборки (sample interval). Такой вид дискретизации часто называют амплитудно-импульсной модуляцией (АИМ).

в) Дискретные по уровню, непрерывные по времени. Такие сигналы получают из непрерывных в результате квантования по уровню.

Под квантованием по уровню (или просто квантованием) подразумевают преобразование некоторой величины с непрерывной шкалой значений (например, амплитуда сигнала) в величину, имеющую дискретную шкалу значений.

Эту непрерывную шкалу значений разбивают на 2m+1 интервалов, называемых шагами квантования. Из множества мгновенных значений, принадлежащих j-тому шагу квантования, только одно значение S j является разрешенным, оно называется j-тым уровнями квантования. Квантование сводится к замене любого мгновенного значения непрерывного сигнала одним из конечного множества уровней квантования (обычно ближайшим):

S j , где j=-m,-m+1,…,-1,0,1,…,m.

Совокупность значений S j образует дискретную шкалу уровней квантования. Если эта шкала равномерна, т.е. разность ΔS j = S j - S j-1 постоянна, квантование называется равномерным. В противном случае – неравномерным. Благодаря простоте технической реализации равномерное квантование получило наиболее широкое распространение.

г) Дискретные по уровню и времени. Такие сигналы получают, осуществляя дискретизацию и квантование одновременно. Данные сигналы легко представить в цифровой форме (digital sample), т.е. в виде чисел с конечным числом разрядов, заменив каждый импульс числом, обозначающий номер уровня квантования, которого достиг импульс в конкретный момент времени. По этой причине данные сигналы часто называют цифровыми.

Толчком к представлению непрерывных сигналов в дискретной (цифровой) форме послужила необходимость засекречивания речевых сигналов во время 2-ой мировой войны. Еще большим стимулом к цифровому преобразованию непрерывных сигналов явилось создание ЭВМ, которые используются в качестве источника или приемника сигналов во многих системах передачи информации.

Приведем примеры цифрового преобразования непрерывных сигналов. Например, в цифровых телефонных системах (стандарт G.711) замена аналогового сигнала последовательностью отсчетов происходит с частотой 2F=8000 Гц, Т д = 125 мкс.(Так как диапазон частот телефонного сигнала составляет 300-3400 Гц, а частота выборки по теореме Найквиста-Котельникова должна быть как минимум в два раза больше максимальной частоты преобразовываемого сигнала F). Далее каждый импульс заменяется в 8-ми разрядном аналого-цифровом преобразователе (АЦП – ADC-Analog-to-Digital Converter) двоичным кодом, учитывающим знак и амплитуду отсчета (256 уровней квантования). Такой процесс квантования носит название импульсно-кодовой модуляции (ИКМ или PCM – Pulse Code Modulation). При этом используется нелинейный закон квантования, названный "A=87,6", который лучше учитывает природу восприятия человеком речевых сигналов. Скорость передачи одного телефонного сообщения оказывается 8×8000=64 Кбит/с. 30-канальная система передачи телефонных сообщений (система первого уровня иерархии стандарта МККТТ – PDH-E1) с временным разделением каналов работает уже со скоростью 2048 Кбит/с.

При цифровой записи музыки на CD (Compact Disk - компакт-диск), вмещающим максимум 74 минуты стереозвучания, используют частоту дискретизации 2F≈44,1 КГц (так как предел слышимости человеческого уха 20 кГц плюс 10%-ный запас) и 16-ти разрядное линейное квантование каждой выборки (65536 уровней звукового сигнала, для речи достаточно 7-8 разрядов).

Использование дискретных (цифровых) сигналов резко снижает вероятность получения искаженной информации, потому что:

    в этом случае применимы эффективные методы кодирования, которые обеспечивают обнаружение и исправление ошибок (см. тему 6);

    можно избежать свойственного непрерывному сигналу эффекта накопления искажений в процессе их передачи и обработке, поскольку квантованный сигнал легко восстановить до первоначального уровня всякий раз, когда величина накопленных искажений приблизиться к половине шага квантования.

Кроме того, в этом случае обработку и хранение информации можно осуществлять средствами вычислительной техники.

Аналоговый сигнал является непрерывной функцией непрерывного аргумента, т.е. определен для любого значения независимой переменной. Источниками аналоговых сигналов, как правило, являются физические процессы и явления, непрерывные в своем развитии (динамике изменения значений определенных свойств) во времени, в пространстве или по любой другой независимой переменной, при этом регистрируемый сигнал подобен (аналогичен) порождающему его процессу. Пример математической записи конкретного аналогового сигнала: y (t ) = 4.8exp[-(t -4) 2 /2.8]. Пример графического отображения данного сигнала приведен на Рис. 2.2.1, при этом как числовые величины самой функция, так и ее аргументов, могут принимать любые значения в пределах некоторых интервалов y 1 £ y £ y 2 , t 1 £ t £ t 2 . Если интервалы значений сигнала или его независимых переменных не ограничиваются, то по умолчанию они принимаются равными от -¥ до +¥. Множество возможных значений сигнала образует непрерывное пространство, в котором любая точка может быть определена с бесконечной точностью.

Рис. 2.2.1. Графическое отображение сигнала y (t ) = 4.8 exp[-(t -4) 2 /2.8].

Дискретный сигнал по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента. По множеству своих значений он является конечным (счетным) и описывается дискретной последовательностью y (n ×Dt ), где y 1 £ y £ y 2 , Dt - интервал между отсчетами (интервал дискретизации сигнала), n = 0, 1, 2, ..., N – нумерация дискретных значений отсчетов. Если дискретный сигнал получен дискретизацией аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала по координатам n Dt .

Пример дискретизации аналогового сигнала, приведенного на Рис. 2.2.1, представлен на Рис. 2.2.2. При Dt = const (равномерная дискретизация данных) дискретный сигнал можно описывать сокращенным обозначением y (n ).

При неравномерной дискретизации сигнала обозначения дискретных последовательностей (в текстовых описаниях) обычно заключаются в фигурные скобки - {s (t i )}, а значения отсчетов приводятся в виде таблиц с указанием значений координат t i . Для коротких неравномерных числовых последовательностей применяется и следующее числовое описание: s (t i ) = {a 1 , a 2 , ..., a N }, t = t 1 , t 2 , ..., t N .

Цифровой сигнал квантован по своим значениям и дискретен по аргументу. Он описывается квантованной решетчатой функцией y n = Q k [y (n Dt )], где Q k - функция квантования с числом уровней квантования k , при этом интервалы квантования могут быть как с равномерным распределением, так и с неравномерным, например - логарифмическим. Задается цифровой сигнал, как правило, в виде числового массива по последовательным значениям аргумента при Dt = const, но, в общем случае, сигнал может задаваться и в виде таблицы для произвольных значений аргумента.



По существу, цифровой сигнал является формализованной разновидностью дискретного сигнала при округлении значений последнего до определенного количества цифр, как это показано на Рис. 2.2.3. В цифровых системах и в ЭВМ сигнал всегда представлен с точностью до определенного количества разрядов и следовательно всегда является цифровым, С учетом этих факторов при описании цифровых сигналов функция квантования обычно опускается (подразумевается равномерной по умолчанию), а для описания сигналов используются правила описания дискретных сигналов.

Рис. 2.2.2. Дискретный сигнал Рис. 2.2.3. Цифровой сигнал

y (n Dt ) = 4.8 exp[-(n Dt -4) 2 /2.8], Dt = 1. y n = Q k , Dt =1, k = 5.

В принципе, квантованным по своим значениям может быть и аналоговый сигнал, зарегистрированный соответствующей цифровой аппаратурой (Рис. 2.2.4). Но выделять эти сигналы в отдельный тип не имеет смысла - они остаются аналоговыми кусочно-непрерывными сигналами с шагом квантования, который определяется допустимой погрешностью измерений.

Большинство дискретных и цифровых сигналов, с которыми приходится иметь дело, являются дискретизированными аналоговыми сигналами. Но существуют сигналы, которые изначально относятся к классу дискретных, например гамма-кванты.

Рис. 2.2.4. Квантованный сигнал y (t ) = Q k , k = 5.

Спектральное представление сигналов. Кроме привычного временного (координатного) представления сигналов и функций при анализе и обработке данных широко используется описание сигналов функциями частоты, т.е. по аргументам, обратным аргументам временного (координатного) представления. Возможность такого описания определяется тем, что любой сколь угодно сложный по своей форме сигнал можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, совокупность которых называется частотным спектром сигнала. Математически спектр сигналов описывается функциями значений амплитуд и начальных фаз гармонических колебаний по непрерывному или дискретному аргументу - частоте . Спектр амплитуд обычно называется амплитудно-частотной характеристикой (АЧХ) сигнала, спектр фазовых углов – фазо-частотной характеристикой (ФЧХ). Описание частотного спектра отображает сигнал так же однозначно, как и координатное описание.

На Рис. 2.2.5 приведен отрезок сигнальной функции, которая получена суммированием постоянной составляющей (частота постоянной составляющей равна 0) и трех гармонических колебаний. Математическое описание сигнала определяется формулой:

где A n = {5, 3, 6, 8} - амплитуда; f n = {0, 40, 80, 120} - частота (Гц); φ n = {0, -0.4, -0.6, -0.8} - начальный фазовый угол (в радианах) колебаний; n = 0,1,2,3.

Рис. 2.2.5. Временное представление сигнала.

Частотное представление данного сигнала (спектр сигнала в виде АЧХ и ФЧХ) приведено на Рис. 2.2.6. Обратим внимание, что частотное представление периодического сигнала s (t ), ограниченного по числу гармоник спектра, составляет всего восемь отсчетов и весьма компактно по сравнению с непрерывным временным представлением, определенным в интервале от -¥ до +¥.

Рис. 2.2.6. Частотное представление сигнала.

Графическое отображение аналоговых сигналов (Рис. 2.2.1) особых пояснений не требует. При графическом отображении дискретных и цифровых сигналов используется либо способ непосредственных дискретных отрезков соответствующей масштабной длины над осью аргумента (Рис. 2.2.6), либо способ огибающей (плавной или ломанной) по значениям отсчетов (пунктирная кривая на Рис. 2.2.2). В силу непрерывности полей и, как правило, вторичности цифровых данных, получаемых дискретизацией и квантованием аналоговых сигналов, второй способ графического отображения будем считать основным.

Понятия «информация» (от лат. informatio - разъяснение, изложение) и «сообщение» в настоящее время неразрывно связаны между собой.

Информация – это сведения, являющиеся объектом передачи, распределения, преобразования, хранения или непосредственного использования. Сообщение является формой представления информации. Известно, что 80...90% информации человек получает через органы зрения и 10...20%-через органы слуха. Другие органы чувств дают в сумме 1...2 % информации.

Информацию передают в виде сообщений . Сообщение - форма выражения (представления) информации, удобная для передачи на расстояние. Примерами сообщений служат тексты телеграмм, речь, музыка, телевизионное изображение, данные на выходе компьютера, команды в системе автоматического управления объектами и т.п. Сообщения передают с помощью сигналов, которые являются носителями информации. Основным видом сигналов являются электрические сигналы. В последнее время всё большее распространение получают оптические сигналы, н/р, в волоконно-оптических линиях передачи информации. Сигнал - физический процесс, отображающий передаваемое сообщение. Отображение сообщения обеспечивается изменением к-л физической величины, характеризующей процесс. Сигнал передаёт (развёртывает) сообщение во времени, то есть всегда является функцией времени. Сигналы формируются путём изменения тех или иных параметров физического носителя в соответствии с передаваемым сообщением.

Эта величина является информационным параметром сигнала. Информационный параметр сообщения - параметр, в изменении которого "заложена" информация. Для звуковых сообщений информационным параметром является мгновенное значение звукового давления, для неподвижных изображений - коэффициент отражения, для подвижных - яркость свечения участков экрана.

При этом важное значение имеют понятия качества и скорости передачи информации.

Качество передачи информации тем выше, чем меньше искажения информации на приёмной стороне. С увеличением скорости передачи информации требуется принимать специальные меры, препятствующие потерям информации и снижению качества передачи информации.

Передача сообщений на расстояние осущ-ся с помощью к-л материального носителя, н/р, бумаги или магнитной ленты или физического процесса, например, звуковых или электромагнитных волн, тока и т.д.

Передача и хранение информации осуществляется с помощью различных знаков (символов), которые позволяют представить её в некоторой форме.

Сообщения могут быть функциями времени, например речь при передаче телефонных разговоров, температура или давление при передаче телеметрических данных, спектакль при передаче по телевидению и т.п. В других случаях сообщение не является функцией времени (например, текст телеграммы, неподвижное изображение и т.д.). Сигнал передаёт сообщение во времени. Следовательно, он всегда является функцией времени, даже если сообщение (например, неподвижное изображение) таковым не является. Различают 4 вида сигналов: непрерывный сигнал непрерывного вр. (рис.2.2, а), непрерывный дискретного вр. (рис.2.2, б), дискретный непрерывного вр. (рис.2.2, в) и дискретный дискретного времени (рис2.2, г).

Рисунок 2.2 – Непрерывный сигнал непрерывного времени (а), непрерывный сигнал дискретного времени (б), дискретный сигнал непрерывного времени (в), дискретный сигнал дискретного времени (г).

Непрерывные сигналы непрерывного вр. наз-т сокращенно непрерывными (аналог.) сигн-ми. Они могут изменяться в произвольные моменты, принимая любые значения из непрерывного множества возможных значений (синусоида).

Непрерывные сигналы дискретного вр. могут принимать произвольные значения, но изменяться только в определенные, наперед заданные (дискретные) моменты t 1 , t 2 , t 3 .

Дискретные сигналы непрерывного времени отличаются тем, что они могут изменяться в произвольные моменты, но их величины принимают только разрешенные (дискретные) значения.

Дискретные сигналы дискретного времени (сокращенно дискретные) в дискретные моменты вр.могут принимать только разреш-е (дискретные) значения.

По характеру изменения информационных параметров различают непрерывные и дискретные сообщения.

Аналоговый сигнал является непрерывной или частично непрерывной функцией времени Х(t). Мгновенные значения сигнала являются аналогом физической величины рассматриваемого процесса.

Дискретный сигнал представляет собой дискретные импульсы, следую­щие друг за другом с интервалом времени Δt, ширина импульсов одинакова, а уровень (площадь импульса) является аналогом мгновенного значения некоторой физической величины, которую представляет дискретный сигнал.

Цифровой сигнал представляет собой дискретный ряд цифр, следующих друг за другом с интервалом времени Δt, в виде двоичных разрядов и представляющих мгновенное значение некоторой физической величины.

Непрерывный или аналоговый сигнал это сигнал, который может принимать любые уровни значений в некотором интервале величин. Непрерывный по времени сигнал это сигнал, заданный на всей оси времени.

Например, речь является сообщением непрерывным как по уровню, так и по времени, а датчик температуры, выдающий её значения через каждые 5 мин, служит источником сообщений, непрерывных по величине, но дискретных по времени.

Понятие о количестве информации и возможности ее измерения является основой теории информации. Теория информации сформировалась в 20 веке. Пионерами теория информации считают Клод Шеннонна (США), А.Н. Колмогорова (СССР) Р. Хартли (США) и др. Согласно Клоду Шеннонну, информация - снятая неопределенность. Т.е. информативность сообщения х-ся содержащейся в ней полезной информации т.е. та часть сообщения которая уменьшает существующую до ее получения неопределнность чего-либо.