Работа со звуковой системой ПК. Вычисление информационного объема закодированного звука. Кодирование звуковой информации Разрешение звукового файла


Знание составляется из мелких
крупинок ежедневного опыта.
Д.И. Писарев

Цели: Применение теоретических знаний на практике.
Задачи урока:
Научить принципу двоичного кодирования при оцифровке звука;
Познакомить с понятием временной дискретизации звука;
Установить зависимость между качеством кодирования звука, глубиной кодирования и частотой дискретизации;
Научить оценивать информационный объем аудиофайла;
Записывать звук с помощью компьютера, сохранять его в звуковых файлах в формате WAV, воспроизводить.

Ход урока:

I. Организационный момент 1. Звучит музыка
2. Слова учителя:

Тема нашего урока «Двоичное кодирование звуковой информации». Сегодня мы познакомимся с понятием временной дискретизации звука, установим эксперементальным путем зависимость между качеством кодирования звука, глубиной кодирования и частотой дискретизации, научимся оценивать объем аудифайлов, записывать звук с помощью компьютера, сохранять его в звуковых файлах в формате WAV и воспроизводить.

II. Актуализация знаний учащихся. Вопросы: (ответы записывать в бланк №1)

1. Перечислите виды существования информации? (числовая, текстовая, графическая, звуковая).
2. Какое ключевое слово можно подобрать к видеоряду? (кодирование информации).
3. Что называют глубиной звука? (глубина звука или глубина кодирования - количество бит информации на кодировку звука).
4. Какие уровни громкости может иметь звук? (звук может иметь различные уровни громкости.

5. Что называется частотой дискретизации? (Частота дискретизации - количество измерений уровня входного сигнала в единицу времени (за 1 секунду).
6. По какой формуле вычисляется размер цифрового моноаудиофайла?
(А=Д*Т*I).
Д- частота дискретизации;
Т- время звучания или записи звука;
I- разрядность регистра.
7. По какой формуле вычисляется размер цифрового стереоаудиофайла?
А=2*Д*Т*I

III. Решение задач. Задача №1 (Семакин. №88 стр. 157, задачник №1). Бланк №1.

Определить объем памяти для хранения цифрового аудиофайла, время звучания которого составляет две минуты при частоте дискретизации 44.1 кГц и расширении 16 бит.


IV. Изучение нового материала.

С начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию.
С помощью специальных программных средств (редакторов звукозаписей) открываются широкие возможности по созданию, редактированию и прослушиванию звуковых файлов. Создаются программы распознавания речи и, в результате, появляется возможность управления компьютером при помощи голоса.
Из курса физики вам известно, что звук представляет собой механическую волну с непрерывно меняющейся амплитудой и частотой (рис. 1). Чем выше амплитуда, тем громче звук, чем меньше частота, тем ниже тон. Компьютер -устройство цифровое, поэтому непрерывный звуковой сигнал должен быть преобразован в последовательность электрических импульсов (нулей и единиц). Для этого плоскость, на которой графически представлена звуковая волна, разбивается на горизонтальные и вертикальные линии (рис. 2 и рис. 3). Горизонтальные линии -это уровни громкости, а вертикальные - количество измерений за 1 секунду(одно измерение в секунду - это один герц), или частота дискретизации (Гц). Такой способ позволяет заменить непрерывную зависимость на дискретную последовательность уровней громкости, каждой из которых присваивается значение в двоичном коде (рис. 4).

рис.1 рис.2 рис.3 рис.4
Количество уровней громкости зависит от глубины звука - количества байтов, используемыз для кодирования одного уровня. Обычно 8 кГц и уровень квантования (код длиной 8 бит).
, где N- количество уровней громкости, а I - глубина звука (биты)

Пример: Бланк №3
Решение:
1)кодирование с частотой 5 Гц - это значит, что происходит измерений высоты звука в 1 сек. Глубина 4 бита - означает, что используются 16 уровней громкости.
«округлять» значения высоты звука будем до ближайшего нижнего уровня. (Результат кодирования: 1000 1000 1001 О11О 0111)

2) Для расчета информационного объема закодированного звука (А) используется простая формула: А = D * i * Т, где: D - частота дискретизации (Гц); i - глубина звука (бит); Т - время звучания (сек).
Получаем: А = 5 Гц * 4 бита * 1 сек = 20 бит.

V. Обучающая самостоятельная работа. Бланк №5


VI. Исследовательское задание. Бланк №6

Группы №1-5. Установить зависимость между качеством двоичного кодирования звука и информационным объемом аудиофайла для звуковой информации различного содержания (монологическая речь, диалогическая речь, стихотворение, песня); зависимость между информационным объемом файла и режимом записи (моно, стерео).


Ход исследовательской работы:

1) Заполнить бланк №2.
2) Записать результаты в таблицу, полученные в ходе эксперимента.
3) Сделать вывод.

VII. Подведение итогов работы в группах
VIII. Мини проект Музыкальные и звуковые возможности.
Обозначения: Программа: "В лесу родилась елочка"
SCRN 7
LINE (20,0)-(300,180),2,BF
FOR I=l TO 2000
X=280*RND+20 Y=180*RND
C=16*RND
PSET(X,Y),C
NEXT I
SLEEP 1
LINE (150,140)-(170,160),6,BF
PSET(110,140)
LINE-(210,140), 10
LINE-(160,110),10
LINE- (110,140),10
PAINT (160,120), 10,10
LOCATE 24,10
PRINT «В лесу родилась елочка»
PLAY «ms+80 02 18 caajafcc»
PSET (120,110)
LINE-(200,110),10
LINE-(160,85),10
LINE-(120,110),10
PAINT (160,90),10,10
LOCATE 24,10
PRINT "В лесу она росла",
PLAY "caab->dc4"
PSET (130,85)
LINE-(190,85),10
LINE-(160,65),10
LINE-(130,85), 10
PAINT (160,70),10,10
LOCATE 24,10
PRINT «ЗИМОЙ И ЛЕТОМ СТРОЙНАЯ»
PLAY "c PSET (140,65)
LINE-(180,65), 10
LINE -(160,50), 10
LINE - PAINT (160,60), 10,10
LOCATE 24,10
PRINT "ЗЕЛЕНАЯ БЫЛА"
PLAY "caajofu"
SLEEP
STOP
IX Итог урока

1). Контроль уровня усвоения программного материала
1. При частоте дискретизации 8 кГц качество дискретизированного звукового сигнала соответствует:

    а) качеству звучания аудио-CD;
    б) качеству радиотрансляции;
    в) среднему качеству.
2. В каком формате сохраняются звуковые файлы:
    a) DOC;
    б) WAV;
    в) BMP.
3. Качество кодирования непрерывного звукового сигнала зависит:
    а) от частоты дискретизации и глубины кодирования;
    б) от глубины цвета и разрешающей способности монитора;
    в) от международного стандарта кодирования.
4. Два звуковых файла записаны с одинаковой частотой дискретизации и глубиной кодирования. Информационный объем файла, записанного в стереорежиме, больше информационного объема файла, записанного в монорежиме:
    а) в 4 раза;
    б) объемы одинаковые;
    в) в 2 раза.
2). Оценка знаний и умений учащихся.
3). Слово учителя.

Безусловно, оценка качества звучания - во многом субъективна и зависит от нашего восприятия. Компьютер, так же как и человек, кодирует звуковую информацию с целью хранения и последующего воспроизведения. Подумайте, а в чем разница между звуковой информацией, хранимой в памяти ПК и в памяти человека? (Ответ: у человека процесс кодирования звука тесно связан с эмоциями).
Таким образом, компьютер хранит звук, а человек музыку!!! Музыка -единственный язык, на котором душа говорит с душою (Бертольд Авербах). Она может поднять в небеса, пробудить чувства, сковать разум и вселить страх. Для каждого человека музыка своя. Какие эмоции или ассоциации вызывает у вас «Лунная соната»?... Теплый взгляд любящего человека, нежное касание материнской руки, а теперь возможно, что эти чарующие звуки будут напоминать вам и об уроке информатики. Все это, согласитесь, недоступно цифровому двоичному коду.

Х. Домашнее задание Задачи № 89,91,92 стр 157.

Решение задач на кодирование звуковой информации .

  1. Теоретическая часть

При решении задач учащиеся опираются на следующие понятия:

Временная дискретизация – процесс, при котором, во время кодирования непрерывного звукового сигнала, звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Чем больше амплитуда сигнала, тем громче звук.

Глубина звука (глубина кодирования) - количество бит на кодировку звука.

Количество различных уровней громкости рассчитываем по формуле N= 2 I , где I – глубина звука.

Частота дискретизации – количество измерений уровня входного сигнала в единицу времени (за 1 сек). Чем больше частота дискретизации, тем точнее процедура двоичного кодирования. Частота измеряется в герцах (Гц).

Качество двоичного кодирования – величина, которая определяется глубиной кодирования и частотой дискретизации.

Разрядность регистра - число бит в регистре аудио адаптера. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического тока в число и обратно. Если разрядность равна I, то при измерении входного сигнала может быть получено 2 I =N различных значений.

  1. Практическая часть. Разбор и решение задачи.

Задача 1 . Оцените информационный объём цифрового звукового стерео файла длительностью 20 секунд при глубине кодирования 16 бит и частоте дискретизации 10000 Гц? Результат представить в Кбайтах, округлить до сотых.

При решении таких задач надо не забывать следующее:

Что моно - 1 канал, стерео - 2 канала

Задача 2 . Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит.

Дано:

I = 8 бит=1 байт

t = 10 сек

η = 22,05 кГц = 22,05 * 1000 Гц = 22050 Гц

I - разрядность звуковой карты,

t - время звучания аудиофайла,

η - частота дискретизации

Решение:

V(Инфор.) = I · η ·t

V(Инфор.) = 22050 *10 *1 = 220500 байт

Ответ: V(Инфор.) = 220500 байт

Найти: V(информационный объём)-?

Цель. Осмыслить процесс преобразования звуковой информации, усвоить понятия необходимые для подсчета объема звуковой информации. Научиться решать задачи по теме.

Цель-мотивация. Подготовка к ЕГЭ.

План урока

1. Просмотр презентации по теме с комментариями учителя. Приложение 1

Материал презентации: Кодирование звуковой информации.

С начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию.

Процесс преобразования звуковых волн в двоичный код в памяти компьютера :

Процесс воспроизведения звуковой информации, сохраненной в памяти ЭВМ :

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда, тем он громче для человека, чем больше частота сигнала, тем выше тон. Программное обеспечение компьютера в настоящее время позволяет непрерывный звуковой сигнал преобразовывать в последовательность электрических импульсов, которые можно представить в двоичной форме. В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация . Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды.

Таким образом, непрерывная зависимость амплитуды сигнала от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек».Каждой «ступеньке» присваивается значение уровня громкости звука, его код(1, 2, 3 и так

далее). Уровни громкости звука можно рассматривать как набор возможных состояний, соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание.

Аудиоадаптер (звуковая плата) - специальное устройство, подключаемое к компьютеру, предназначенное для преобразования электрических колебаний звуковой частоты в числовой двоичный код при вводе звука и для обратного преобразования (из числового кода в электрические колебания) при воспроизведении звука.

В процессе записи звука аудиоадаптер с определенным периодом измеряет амплитуду электрического тока и заносит в регистр двоичный код полученной величины. Затем полученный код из регистра переписывается в оперативную память компьютера. Качество компьютерного звука определяется характеристиками аудиоадаптера:

  • Частотой дискретизации
  • Разрядностью(глубина звука).

Частота временной дискретизации

Это количество измерений входного сигнала за 1 секунду. Частота измеряется в герцах (Гц). Одно измерение за одну секунду соответствует частоте 1 Гц. 1000 измерений за 1 секунду – 1 килогерц (кГц). Характерные частоты дискретизации аудиоадаптеров:

11 кГц, 22 кГц, 44,1 кГц и др.

Разрядность регистра (глубина звука) число бит в регистре аудиоадаптера, задает количество возможных уровней звука.

Разрядность определяет точность измерения входного сигнала. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического сигнала в число и обратно. Если разрядность равна 8 (16) , то при измерении входного сигнала может быть получено 2 8 = 256 (2 16 =65536) различных значений. Очевидно, 16 разрядный аудиоадаптер точнее кодирует и воспроизводит звук, чем 8-разрядный. Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчитать по формуле:

N = 2 I = 2 16 = 65536, где I - глубина звука.

Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код. При двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, то есть частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации тем точнее процедура двоичного кодирования.

Звуковой файл - файл, хранящий звуковую информацию в числовой двоичной форме.

2. Повторяем единицы измерения информации

1 байт = 8 бит

1 Кбайт = 2 10 байт=1024 байт

1 Мбайт = 2 10 Кбайт=1024 Кбайт

1 Гбайт = 2 10 Мбайт=1024 Мбайт

1 Тбайт = 2 10 Гбайт=1024 Гбайт

1 Пбайт = 2 10 Тбайт=1024 Тбайт

3. Закрепить изученный материал, просмотрев презентацию, учебник

4. Решение задач

Учебник , показ решения на презентации.

Задача 1. Определить информационный объем стерео аудио файла длительностью звучания 1 секунда при высоком качестве звука(16 битов, 48 кГц).

Задача (самостоятельно). Учебник , показ решения на презентации.
Определить информационный объем цифрового аудио файла длительностью звучания которого составляет 10 секунда при частоте дискретизации 22,05 кГц и разрешении 8 битов.

5. Закрепление. Решение задач дома, самостоятельно на следующем уроке

Определить объем памяти для хранения цифрового аудио­файла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 битов.

В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретиза­ции и разрядность?

Объем свободной памяти на диске - 5,25 Мб, разрядность звуковой платы - 16. Какова длительность звучания цифро­вого аудиофайла, записанного с частотой дискретизации 22,05 кГц?

Одна минута записи цифрового аудиофайла занимает на дис­ке 1,3 Мб, разрядность звуковой платы - 8. С какой частотой дискретизации записан звук?

Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты?

Цифровой аудиофайл содержит запись звука низкого качест­ва (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб?

Две минуты записи цифрового аудиофайла занимают на дис­ке 5,05 Мб. Частота дискретизации - 22 050 Гц. Какова раз­рядность аудиоадаптера?

Объем свободной памяти на диске - 0,1 Гб, разрядность зву­ковой платы - 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44 100 Гц?

Ответы

№ 92. 124,8 секунды.

№ 93. 22,05 кГц.

№ 94. Высокое качество звучания достигается при частоте дискретизации 44,1 кГц и разрядности аудиоадаптера, равной 16. Требуемый объем памяти - 15,1 Мб.

№ 95. Для мрачного и приглушенного звука характерны следующие параметры: частота дискретизации - 11 кГц, разрядность аудиоадаптера - 8. Длительность звучания равна 60,5 с.

№ 96. 16 битов.

№ 97. 20,3 минуты.

Литература

1. Учебник: Информатика, задачник-практикум 1 том, под редакцией И.Г.Семакина, Е.К. Хеннера)

2. Фестиваль педагогических идей «Открытый урок»Звук. Двоичное кодирование звуковой информации. Супрягина Елена Александровна, учитель информатики.

3. Н. Угринович. Информатика и информационные технологии. 10-11 классы. Москва. Бином. Лаборатория знаний 2003.

При решении задач учащиеся опираются на следующие понятия:

Временная дискретизация – процесс, при котором, во время кодирования непрерывного звукового сигнала, звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Чем больше амплитуда сигнала, тем громче звук.

Глубина звука (глубина кодирования) - количество бит на кодировку звука.

Уровни громкости (уровни сигнала) - звук может иметь различные уровни громкости. Количество различных уровней громкости рассчитываем по формуле N = 2 I где I – глубина звука.

Частота дискретизации количество измерений уровня входного сигнала в единицу времени (за 1 сек). Чем больше частота дискретизации, тем точнее процедура двоичного кодирования. Частота измеряется в герцах (Гц). 1 измерение за 1 секунду -1 ГЦ.

1000 измерений за 1 секунду 1 кГц. Обозначим частоту дискретизации буквой D . Для кодировки выбирают одну из трех частот: 44,1 КГц, 22,05 КГц, 11,025 КГц.

Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц .

Качество двоичного кодирования – величина, которая определяется глубиной кодирования и частотой дискретизации.

Аудиоадаптер (звуковая плата) – устройство, преобразующее электрические колебания звуковой частоты в числовой двоичный код при вводе звука и обратно (из числового кода в электрические колебания) при воспроизведении звука.

Характеристики аудиоадаптера: частота дискретизации и разрядность регистра.).

Разрядность регистра - число бит в регистре аудиоадаптера. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического тока в число и обратно. Если разрядность равна I , то при измерении входного сигнала может быть получено 2 I = N различных значений.

Размер цифрового моноаудиофайла ( A ) измеряется по формуле:

A = D * T * I /8 , где D частота дискретизации (Гц), T – время звучания или записи звука, I разрядность регистра (разрешение). По этой формуле размер измеряется в байтах.

Размер цифрового стереоаудиофайла ( A ) измеряется по формуле:

A =2* D * T * I /8 , сигнал записан для двух колонок, так как раздельно кодируются левый и правый каналы звучания.

Учащимся полезно выдать таблицу 1 , показывающую, сколько Мб будет занимать закодированная одна минута звуковой информации при разной частоте дискретизации:

Частота дискретизация, КГц

44,1

22,05

11,025

16 бит, стерео

10,1 Мб

5,05 Мб

2,52 Мб

16 бит, моно

5,05 Мб

2,52 Мб

1,26 Мб

8 бит, моно

2,52 Мб

1,26 Мб

630 Кб

1. Размер цифрового файла

Уровень «3»

1. Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит. Файл сжатию не подвержен. (, стр. 156, пример 1)

Решение:

Формула для расчета размера (в байтах) цифрового аудио-файла: A = D * T * I /8.

Для перевода в байты полученную величину надо разделить на 8 бит.

22,05 кГц =22,05 * 1000 Гц =22050 Гц

A = D * T * I /8 = 22050 х 10 х 8 / 8 = 220500 байт.

Ответ: размер файла 220500 байт.

2. Определить объем памяти для хранения цифрового аудиофайла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 бит. (, стр. 157, №88)

Решение :

A = D * T * I /8. – объем памяти для хранения цифрового аудиофайла.

44100 (Гц) х 120 (с) х 16 (бит) /8 (бит) = 10584000 байт= 10335,9375 Кбайт= 10,094 Мбайт.

Ответ: ≈ 10 Мб

Уровень «4»

3. В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретизации и разрядность? (, стр. 157, №89)

Решение:

Формула для расчета частоты дискретизации и разрядности: D * I =А/Т

(объем памяти в байтах) : (время звучания в секундах):

2, 6 Мбайт= 2726297,6 байт

D * I =А/Т= 2726297,6 байт: 60 = 45438,3 байт

D= 45438,3 байт : I

Разрядность адаптера может быть 8 или 16 бит. (1 байт или 2 байта). Поэтому частота дискретизации может быть либо 45438,3 Гц = 45,4 кГц ≈ 44,1 кГц –стандартная характерная частота дискретизации, либо 22719,15 Гц = 22,7 кГц ≈ 22,05 кГц - стандартная характерная частота дискретизации

Ответ:

4. Объем свободной памяти на диске - 5,25 Мб, разрядность звуковой платы - 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц? (, стр. 157, №90)

Решение:

Формула для расчета длительности звучания: T =A /D /I

(объем памяти в байтах) : (частота дискретизации в Гц) : (разрядность звуковой платы в байтах):

5,25 Мбайт = 5505024 байт

5505024 байт: 22050 Гц: 2 байта = 124,8 сек
Ответ: 124,8 секунды

5. Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы - 8. С какой частотой дискретизации записан звук? (, стр. 157, №91)

Решение:

Формула для расчета частоты дискретизации : D =А/Т/ I

(объем памяти в байтах) : (время записи в секундах) : (разрядность звуковой платы в байтах)

1,3 Мбайт = 1363148,8 байт

1363148,8 байт: 60: 1 = 22719,1 Гц

Ответ: 22,05 кГц

6. Две минуты записи цифрового аудиофайла занимают на диске 5,1 Мб. Частота дискретизации - 22050 Гц. Какова разрядность аудиоадаптера? (, стр. 157, №94)

Решение:

Формула для расчета разрядности: (объем памяти в байтах) : (время звучания в секундах): (частота дискретизации):

5, 1 Мбайт= 5347737,6 байт

5347737,6 байт: 120 сек: 22050 Гц= 2,02 байт =16 бит

Ответ: 16 бит

7. Объем свободной памяти на диске - 0,01 Гб, разрядность звуковой платы - 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44100 Гц? (, стр. 157, №95)

Решение:

Формула для расчета длительности звучания T =A /D /I

(объем памяти в байтах) : (частота дискретизации в Гц) : (разрядность звуковой платы в байтах)

0,01 Гб = 10737418,24 байт

10737418,24 байт: 44100: 2 = 121,74 сек =2,03 мин
Ответ: 20,3 минуты

8. Оцените информационный объем моноаудиофайла длительностью звучания 1 мин. если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно:
а) 16 бит и 8 кГц;
б) 16 бит и 24 кГц.

(, стр. 76, №2.82)

Решение:

а).
16 бит х 8 000 = 128000 бит = 16000 байт = 15,625 Кбайт/с
15,625 Кбайт/с х 60 с = 937,5 Кбайт

б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 24 000 = 384000 бит = 48000 байт = 46,875 Кбайт/с
2) Информационный объем звукового файла длительностью 1 минута равен:
46,875 Кбайт/с х 60 с =2812,5 Кбайт = 2,8 Мбайт

Ответ: а) 937,5 Кбайт; б) 2,8 Мбайт

Уровень «5»

Используется таблица 1

9. Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты? (, стр. 157, №92)

Решение:

Высокое качество звучания достигается при частоте дискретизации 44,1КГц и разрядности аудиоадаптера, равной 16.
Формула для расчета объема памяти: (время записи в секундах) x (разрядность звуковой платы в байтах) x (частота дискретизации):
180 с х 2 х 44100 Гц = 15876000 байт = 15,1 Мб
Ответ: 15,1 Мб

10. Цифровой аудиофайл содержит запись звука низкого качества (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб? (, стр. 157, №93)

Решение:

Для мрачного и приглушенного звука характерны следующие параметры: частота дискретизации - 11, 025 КГц, разрядности аудиоадаптера - 8 бит (см. таблицу 1). Тогда T =A /D /I . Переведем объем в байты: 650 Кб = 665600 байт

Т=665600 байт/11025 Гц/1 байт ≈60.4 с

Ответ: длительность звучания равна 60,5 с

Решение:

Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 48 000 х 2 = 1 536 000 бит = 187,5 Кбайт (умножили на 2, так как стерео).

Информационный объем звукового файла длительностью 1 минута равен:
187,5 Кбайт/с х 60 с ≈ 11 Мбайт

Ответ: 11 Мб

Ответ: а) 940 Кбайт; б) 2,8 Мбайт.

12. Рассчитайте время звучания моноаудиофайла, если при 16-битном кодировании и частоте дискретизации 32 кГц его объем равен:
а) 700 Кбайт;
б) 6300 Кбайт

(, стр. 76, №2.84)

Решение:

а).
1) Информационный объем звукового файла длительностью в 1 секунду равен:

700 Кбайт: 62,5 Кбайт/с = 11,2 с

б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 32 000 = 512000 бит = 64000 байт = 62,5 Кбайт/с
2) Время звучания моноаудиофайла объемом 700 Кбайт равно:
6300 Кбайт: 62,5 Кбайт/с = 100,8 с = 1,68 мин

Ответ: а) 10 сек; б) 1,5 мин.

13. Вычислить, сколько байт информации занимает на компакт-диске одна секунда стереозаписи (частота 44032 Гц, 16 бит на значение). Сколько занимает одна минута? Какова максимальная емкость диска (считая максимальную длительность равной 80 минутам)? (, стр. 34, упражнение №34)

Решение:

Формула для расчета объема памяти A = D * T * I :
(время записи в секундах) * (разрядность звуковой платы в байтах) * (частота дискретизации). 16 бит -2 байта.
1) 1с х 2 х 44032 Гц = 88064 байт (1 секунда стереозаписи на компакт-диске)
2) 60с х 2 х 44032 Гц = 5283840 байт (1 минута стереозаписи на компакт-диске)
3) 4800с х 2 х 44032 Гц = 422707200 байт=412800 Кбайт=403,125 Мбайт (80 минут)

Ответ: 88064 байт (1 секунда), 5283840 байт (1 минута), 403,125 Мбайт (80 минут)

2. Определение качества звука.

Для определения качества звука надо найти частоту дискретизации и воспользоваться таблицей №1

256 (2 8) уровней интенсивности сигнала -качество звучания радиотрансляции, использованием 65536 (2 16) уровней интенсивности сигнала - качество звучания аудио-CD. Самая качественная частота соответствует музыке, записанной на компакт-диске. Величина аналогового сигнала измеряется в этом случае 44 100 раз в секунду.

Уровень «5»

13. Определите качество звука (качество радиотрансляции, среднее качество, качество аудио-CD) если известно, что объем моноаудиофайла длительностью звучания в 10 сек. равен:
а) 940 Кбайт;
б) 157 Кбайт.

(, стр. 76, №2.83)

Решение:

а).
1) 940 Кбайт= 962560 байт = 7700480 бит
2) 7700480 бит: 10 сек = 770048 бит/с
3) 770048 бит/с: 16 бит = 48128 Гц –частота дискретизации – близка к самой высокой 44,1 КГц
Ответ: качество аудио-CD

б).
1) 157 Кбайт= 160768 байт = 1286144 бит
2) 1286144 бит: 10 сек = 128614,4 бит/с
3) 128614,4 бит/с: 16 бит = 8038,4 Гц
Ответ: качество радиотрансляции

Ответ: а) качество CD; б) качество радиотрансляции.

14. Определите длительность звукового файла, который уместится на гибкой дискете 3,5”. Учтите, что для хранения данных на такой дискете выделяется 2847 секторов объемом 512 байт.
а) при низком качестве звука: моно, 8 бит, 8 кГц;
б) при высоком качестве звука: стерео, 16 бит, 48 кГц.

(, стр. 77, №2.85)

Решение:

а).

8 бит х 8 000 = 64 000 бит = 8000 байт = 7,8 Кбайт/с
3) Время звучания моноаудиофайла объемом 1423,5 Кбайт равно:
1423,5 Кбайт: 7,8 Кбайт/с = 182,5 с ≈ 3 мин

б).
1) Информационный объем дискеты равен:
2847 секторов х 512 байт = 1457664 байт = 1423,5 Кбайт
2) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 48 000 х 2= 1 536 000 бит = 192 000 байт = 187,5 Кбайт/с
3) Время звучания стереоаудиофайла объемом 1423,5 Кбайт равно:
1423,5 Кбайт: 187,5 Кбайт/с = 7,6 с

Ответ: а) 3 минуты; б) 7,6 секунды.

3. Двоичное кодирование звука.

При решении задач пользуется следующим теоретическим материалом:

Для того, чтобы кодировать звук, аналоговый сигнал, изображенный на рисунке,


плоскость разбивается на вертикальные и горизонтальные линии. Вертикальное разбиение –это дискретизация аналогового сигнала (частота измерения сигнала), горизонтальное разбиение - квантование по уровню. Т.е. чем мельче сетка – тем качественнее приближен аналоговый звук с помощью цифр. Восьмибитное квантование применяется для оцифровки обычной речи (телефонного разговора) и радиопередач на коротких волнах. Шестнадцатибитное – для оцифровки музыки и УКВ (ультро-коротко-волновые) радиопередач.

Уровень «3»

15. Аналоговый звуковой сигнал был дискретизирован сначала с использованием 256 уровней интенсивности сигнала (качество звучания радиотрансляции), а затем с использованием 65536 уровней интенсивности сигнала (качество звучания аудио-CD). Во сколько раз различаются информационные объемы оцифрованного звука? (, стр. 77, №2.86)

Решение:

Длина кода аналогового сигнала с использованием 256 уровней интенсивности сигнала равна 8 битам, с использованием 65536 уровней интенсивности сигнала равна 16 битам. Так как длина кода одного сигнала увеличилась вдвое, то информационные объемы оцифрованного звука различаются в 2 раза.

Ответ: в 2 раза.

Уровень « 4 »

16. Согласно теореме Найквиста-Котельникова, для того чтобы аналоговый сигнал можно было точно восстановить по его дискретному представлению (по его отсчетам), частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты этого сигнала.

    Какова должна быть частота дискретизации звука, воспринимаемого человеком?

    Что должно быть больше: частота дискретизации речи или частота дискретизации звучания симфонического оркестра?

Цель: познакомить учащихся с характеристиками аппаратных и программных средств работы со звуком. Виды деятельности: привлечение знаний из курса физики (или работа со справочниками ). (, стр. ??, задача 2)

Решение:

Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц. Таким образом, по теореме Найквиста-Котельникова, для того чтобы аналоговый сигнал можно было точно восстановить по его дискретному представлению (по его отсчетам), частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты этого сигнала. Максимальная звуковая частота которую слышит человек -20 КГц, значит, аппарату ра и программные средства должны обеспечивать частоту дискретизации не менее 40 кГц, а точнее 44,1 КГц. Компьютерная обработка звучания симфонического оркестра предполагает более высокую частоту дискретизации, чем обработка речи, поскольку диапазон частот в случае симфонического оркестра значительно больше.

Ответ: не меньше 40 кГц, частота дискретизации симфонического оркестра больше.

Уровень»5»

17. На рисунке изображено зафиксированное самописцем звучание 1 секунды речи. Закодируйте его в двоичном цифровом коде с частотой 10 Гц и длиной кода 3 бита. (, стр. ??, задача 1)

Решение:

Кодирование с частотой 10 Гц означает, что мы должны измерить высоту звука 10 раз за секунду. Выберем равноотстоящие моменты времени:

Длина кода в 3 бита означает 2 3 = 8 уровней квантования. То есть в качестве числового кода высоты звука в каждый выбранный момент времени мы можем задать одну из следующих комбинаций: 000, 001, 010, 011, 100, 101, 110, 111. Их всего 8, следовательно, высоту звука можно измерять на 8 «уровнях»:

«Округлять» значения высоты звука будем до ближайшего нижнего уровня:

Используя данный способ кодирования, мы получим следующий результат (пробелы поставлены для удобства восприятия): 100 100 000 011 111 010 011 100 010 110.

Примечание. Целесообразно обратить внимание учащихся на то, насколько неточно код передает изменение амплитуды. То есть частота дискретизации 10 Гц и уровень квантования 2 3 (3 бита) слишком малы. Обычно для звука (голоса) выбирают частоту дискретизации 8 кГц, т. е. 8000 раз в секунду, и уровень квантования 2 8 (код длиной 8 бит).

Ответ: 100 100 000 011 111 010 011 100 010 110.

18. Объясните, почему уровень квантования относится, наряду с частотой дискретизации, к основным характеристикам представления звука в компьютере. Цели: закрепить понимание учащимися понятий «точность представления данных», «погрешность измерения», «погрешность представления»; повторить с учащимися двоичное кодирование и длину кода. Вид деятельности: работа с определениями понятий . (, стр. ??, задача 3)

Решение:

В геометрии, физике, технике есть понятие «точность измерения», тесно связанное с понятием «погрешность измерения». Но есть еще и понятие «точность представления». Например, про рост человека можно сказать, что он: а) около. 2 м, б) чуть больше 1,7 м, в) равен 1 м 72 см, г) равен 1 м 71 см 8 мм. То есть для обозначения измеренного роста можно использовать 1, 2, 3 или 4 цифры.
Так же и для двоичного кодирования. Если для записи высоты звука в конкретный момент времени использовать только 2 бита, то, даже если измерения были точны, передать можно только 4 уровня: низкий (00), ниже среднего (01), выше среднего (10), высокий (11). Если использовать 1 байт, то можно передать 256 уровней. Чем
выше уровень квантования , или, что то же самое, чем больше битов отводится для записи измеренного значения, тем точнее передается это значение.

Примечание. Следует отметить, что измерительный инструмент тоже должен поддерживать выбранный уровень квантования (длину, измеренную линейкой с дециметровыми делениями, нет смысла представлять с точностью до миллиметра).

Ответ: чем выше уровень квантования тем точнее передается звук.

Литература:

[ 1] Информатика. Задачник-практикум в 2 т. /Под ред. И.Г. Семакина, Е.К. Хеннера: Том 1. – Лаборатория Базовых Знаний, 1999 г. – 304 с.: ил.

Практикум по информатике и информационным технологиям. Учебное пособие для общеобразовательных учреждений / Н.Д. Угринович, Л.Л. Босова, Н.И. Михайлова. – М.: Бином. Лаборатория Знаний, 2002. 400 с.: ил.

Информатика в школе: Приложение к журналу «Информатика и образование». №4 - 2003. - М.: Образование и Информатика, 2003. - 96 с.: ил.

Кушниренко А.Г., Леонов А.Г., Эпиктетов М.Г. и др. Информационная культура: одирование информации. Информационные модели. 9-10 класс: Учебник для общеобразовательных учебных заведений. - 2-е изд. - М.: Дрофа, 1996. - 208 с.: ил.

Гейн А.Г., Сенокосов А.И. Справочник по информатике для школьников. - Екатеринбург: «У-Фактория», 2003. - 346. с54-56.

Основные понятия

Частота дискретизации(f) определяет количество отсчетов, запоминаемых за 1 секунду;

1 Гц (один герц) – это один отсчет в секунду,

а 8 кГц – это 8000 отсчетов в секунду

Глубина кодирования (b) – это количество бит, которое необходимо для кодирования 1 уровня громкости

Время звучания (t)


Объем памяти для хранения данных 1 канала (моно)

I=f·b·t

(для хранения информации о звуке длительностью t секунд, закодированном с частотой дискретизации f Гц и глубиной кодирования b бит требуется I бит памяти)

При двухканальной записи (стерео) объем памяти, необходимый для хранения данных одного канала, умножается на 2

I=f·b·t·2

Единицы измерения I - биты, b -биты, f - Герцы, t – секунды Частота дискретизации 44,1 кГц, 22,05 кГц, 11,025 кГц

Кодирование звуковой информации

Основные теоретические положения

Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

Таким образом, непрерывная зависимость громкости звука от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек".

Частота дискретизации. Для записи аналогового звука и его преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т.е. частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее "лесенка" цифрового звукового сигнала повторяет кривую аналогового сигнала.

Частота дискретизации звука - это количество измерений громкости звука за одну секунду, измеряется в герцах (Гц). Обозначим частоту дискретизации буквой f.

Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду. Для кодировки выбирают одну из трех частот: 44,1 КГц, 22,05 КГц, 11,025 КГц.

Глубина кодирования звука. Каждой "ступеньке" присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации b , которое называется глубиной кодирования звука

Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле N = 2 b . Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно:

N = 2 b = 2 16 = 65 536.

В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему - 1111111111111111.

Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим "моно"). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим "стерео").

Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла.

Задачи для самостоятельной подготовки .

1. Рассчитайте объём монофонического аудиофайла длительностью 10 с при 16-битном кодировании и частоте дискретизации 44,1 к Гц. (861 Кбайт)

2. Производится двухканальная (стерео) звукозапись с частотой дискретизации 48 кГц и 24-битным разрешением. Запись длится 1 минуту, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1)0,3 2) 4 3) 16 4) 132

3. Производится одноканальная (моно) звукозапись с частотой дискретизации 11 кГц и глубиной кодирования 24 бита. Запись длится 7 минут, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1) 11 2) 13 3) 15 4) 22

4. Производится двухканальная (стерео) звукозапись с частотой дискретизации 11 кГц и глубиной кодирования 16 бит. Запись длится 6 минут, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1) 11 2) 12 3) 13 4) 15