П 3.3 8 внешнее механическое воздействие. Страховка на смартфон. Развод от продавцов или полезная услуга? Внешнее механическое воздействие способы подтверждения стойкости электрооборудования

Случай 1

Случай 2

А- Первичное действие

В- Реакция без рассеяния энергии

С- Первичное действие

D- Противоположная реакция с рассеянием энергии

В случае 2 соединительная ткань благодаря присутствующему в ней эластическому элементу позволяет “поглотить” толчок и широко распространить его по поверхности.

Это свойство, получившее название пассивной защиты , крайне эффективно, даже если становится иногда обоюдоострым оружием. В случаях удара плетью из-за энергии, аккумулированной жидкими массами тканей тела, ущерб проявляется позднее.

“...а если бы эта энергия не рассеивалась собственными жидкими массами фасциальной ткани и последствия удара хлыстом, толчка или травмы появлялись бы сразу, какой ущерб был бы нанесен организму?”

Есть только один ответ: конечно, гораздо более тяжелый!

Пример: лезвие ножа разрывает ткани и образует резаную рану только будучи примененным с заточенной стороны; использование тупой стороны может привести к натиранию, распуханию, кожной реакции, но не к подлинному органическому повреждению; единственное отличие между этими двумя ситуациями - это площадь поражаемой поверхности. Чем больше площадь, на которую распространяется травмирующее воздействие, тем менее серьезным будет биологический ущерб , причиненный травмой.

Вторая фаза защитной роли следует за первой и заключается в распространении приложенной ударной силы посредством сплошной фасциальной системы.

Сила, воздействовавшая на тело, приводит к концентрации кинетической энергии в точке удара, вызывая мощные повреждающие последствия. Непрерывность соединительной ткани препятствует большой концентрации кинетической энергии; она перераспределяется через звенья ткани и затем рассеивается посредством ряда факторов, связанных с возобновлением движения и функциональной адаптацией, как фасциальной, так и общей органической, при которой кинетическая энергия преобразуется в тепловую, электрическую и пр., не допуская образования большого количества потенциальной энергии. Эта вторая фаза обозначается термином активная защита .

“Биологический ущерб” - это стратегия, которой фасциальная система оперирует с целью предотвратить накопление кинетической энергии, неожиданно поступившей за такое короткое время, что организм не в состоянии вытерпеть и перераспределить ее (физика учит, что энергия не может быть разрушена, но переводится в другие формы).

Остеопатия с ее фасциальными техниками продемонстрировала себя эффективным орудием для нейтрализации таких ситуаций, облегчая перераспределение кинетической энергии посредством все увеличивающегося рассеяния и уменьшая потенциальную разрушительную мощность.

Роль фасций в координации движений

Фасции и апоневрозы участвуют в координации движений как мышц, так и внутренних органов, разделяя перепонками мышечные структуры и гарантируя, что группы, способные сокращаться, нацеленные на выполнение подобной роли (синергической), могут работать одновременно над выполнением одной и той же функции.

Каждой перепонке и мышечному ложу способствует в выполнении их функций способность соединительной оболочки поддерживать совокупность частей тела. Нервные структуры, содержащиеся в каждом ложе, находятся в тесном механическом соотношении с тканями, которые должны стимулировать. Роль нервов осуществляется посредством нервно-мышечных волокон, сухожильных аппаратов Гольджи, телец Пачини и органов Руффини.

Окончания Руффини

Располагаются в суставных капсулах и смежных с ними областях; ответственны за мышечное сокращение, которое, вместе с последующим движением, изменяет напряжение капсулы. Неутомимые структуры, призываются во время движения, чтобы оно могло производиться плавным образом, без рывков. Кроме того, что позволяют поддерживать положение, отмечают направление движения.

Окончания Гольджи

Структуры медленной адаптации, долгое время “усваивают” направленную им информацию. Находятся в связках, присоединенных к суставам, и поставляют информацию независимо от уровня мышечного сокращения таким образом, чтобы сообщать организму о положении суставов, миг за мигом, независимо от мышечной деятельности.

Корпускулы Пачини

Обнаруживаются в надсуставной соединительной ткани; быстро адаптируются и информируют ЦНС относительно степени ускорения производимого движения (рецептор ускорения).

Мышечное веретено

Регулирует тонус мышцы. Расположение веретен, поскольку они крепятся к скелетным мускулам (сухожильная часть), параллельно мышечным волокнам. В то время как спирально-кольцевое окончание быстро реагирует на малейшее изменение длины мышцы, “цветастое” окончание для равновесия выдает информацию только после значительных изменений длины мышцы. Мускульное веретено - это “блок сравнения длины”, который на каждую стимуляцию может долгое время отдавать информацию.

Внутри веретена находятся тонкие межверетенные фибры, меняющие его чувствительность; они могут меняться без какой либо реальной вариации длины мышцы посредством особой приносящей-гамма, управляемой самими фибрами.

Сухожильные рецепторы Гольджи

Больше отражают напряжение мышцы, чем ее длину. Если у органа обнаруживается перегрузка, он может с их помощью прекратить активность мышцы и тем самым избегнуть риска повреждений; этот фактор определяет расслабление мышц.

Точки “триггер” (спусковой схемы, вибратора) являются локализированными областями большой болезненности и повышенного сопротивления; акупрессура этих точек часто провоцирует сокращение / сгруппирование мышц, которое, если его удерживать, вызывает боль в предусматриваемых областях.

Речь идет о сигнальных постах, обеспечивающих постоянную обратную связь с ЦНС и высшими центрами касательно мгновенных состояний ткани, в которой они расположены. Их модуляция может вызываться как психическим влиянием, так и изменениями химического состава крови.

Цепи

Нервно-мышечная совокупность, содержащаяся в соединительной ткани и напрямую с ней контактирующая, дает возможность прямого синергитического участия, когда мышцы присоединяются к апоневрозу, и косвенного синергитического участия, когда мышцы прикрепляются к кости.

Понятие “цепи мышечного напряжения”, введенное остеопатией и затем подхваченное и расширенное постуральной гимнастикой, находит в фасциальной концепции свое применение.

Функция гаранта координации движений, выполняемая соединительной тканью, вытекает из ее связей с нервной системой (благодаря чисто механическому действию, оказываемому на нервный компонент, и ее чувствительности к натяжению); кроме различения движения, интенсивности, силы, веретено в состоянии активировать высшую нервную систему и вырабатывать новые схемы функционирования. Часто такого рода адаптация выходит за рамки физиологии в компенсациях, задействованных организмом, направленных на устранение любого рода силового воздействия, способного причинить боль.

Если мы будем рассматривать нашу позу как постоянное колебание установления равновесия и его потери, имеющее целью поддержание вертикального положения тела, становится объяснимым, почему, даже при наличии легких аномалий, наша система балансировки должна выполнять корректирование большой точности для поддержания как статической позы (прямостоячее положение), так и динамической (передвижение).

При силовом воздействии фасциальная составляющая нашего тела приспосабливается к ситуации, маскируя и “замалчивая” первичный источник проблемы таким образом, чтобы аннулировать нервное воздействие, вызываемое ситуацией дискомфорта или болевыми ощущениями.

Этот факт позволяет проявиться только последней компенсации, произведенной организмом, и отсюда проистекает симптом боли , который, будучи устраненным без подавления первопричины дисфункции, будет настойчиво вызываться снова начальной проблемой.

Симптом боли - это последний сигнал ряда адаптаций, вводимых по нарастающей компенсационной способностью соединительной ткани, изменяющей физиологическую схему, которые “безмолвствуют” до тех пор, пока самая последняя адаптация в цепи не сможет больше быть компенсирована.

Противоречивая информация

Korr (1976 г.) еще раз подчеркнул важность костного мозга, внутри которого располагается большое количество “моделей (pattern) активности” мышц. Мозг действует, производя комплексные движения, зависящие от активации мышечных цепей, а не от отдельных мышц. Для этой цели привлекаются запрограммированные модели, “хранящиеся про запас” в стволе и костном мозге, которые модифицируются в бесконечное разнообразие моделей еще более сложных и обогащают “склад” этими новыми производными.

Таким образом, каждый род деятельности видоизменяется, усовершенствуется и “исправляется” соответствующими обратными связями, постоянно исходящими от мышц, сухожилий, суставов (их соединительнотканного компонента), участвующих в движении.

GAS и LAS

Английская аббревиатура синдрома общей адаптации (GAS ) и синдрома местной адаптации (LAS).

Синдром общей адаптации, СОА, складывается из реакции тревоги, фазы сопротивления (адаптации), фазы истощения (не удавшейся адаптации) и охватывает весь организм целиком. Синдром местной адаптации, СМА, проявляется практически в той же последовательности, но в ограниченной области тела.

Seyle (1976 г.) назвал стресс неспецифическим элементом, обуславливающим болезнь. Описывая соотношение между синдромом общей и местной адаптации, он особо выделил значение соединительной ткани.

Стресс способствует созданию моделей адаптации, специфических для каждого организма и для каждого вида силового воздействия. В ответ на стресс активируются гомеостатические самонормализующие механизмы.

Если состояние тревоги продолжительно и неоднократно, возникают процессы защитной адаптации, приводящие к долгосрочным изменениям, которые могут стать хроническими.

Посредством пальпации нервно-скелетно-мышечных изменений создается представление о попытках, предпринятых телом, чтобы адаптироваться к накопившимся с течением времени стрессам; получится запутанная картина напряженных, сведенных, уплотнившихся, переутомленных и, наконец, подвергшихся фиброзу тканей (Chaitow, 1979 г.).

Важно понять то, что вследствие продолжительных стрессов постурального типа (обусловленных положением тела), физических и механических, некоторые области тела прикладывают столько компенсационных и адаптационных усилий, что появляются структурные изменения, могущие перерасти в паталогию.

В большинстве случаев сочетание физического и эмоционального стрессов изменяет нервно-скелетно-мышечные структуры до такой степени, что обуславливает ряд идентифицируемых физических аномалий. Компенсационные попытки этих структур породят в свою очередь новые факторы стресса; из-за этого могут возникнуть болевые явления, суставные ограничения, недомогание общего характера, как, например, быстрая утомляемость.

В процессе хронической адаптации к биомеханическому и психогенному стрессу развиваются цепные реакции, связанные с компенсационными видоизменениями мягких тканей (Lewitt, 1992г.). Эти адаптации всегда во вред оптимальному функционированию организма и являются источником постоянно увеличивающегося функционального беспорядка (физиологические изменения).

Последовательность ответов на стресс

В случае продолжительного увеличения мышечного тонуса возникают:

n задержание продуктов катаболизма и отек

n местная нехватка кислорода (связанная с потребностями тканей) и последующая ишемия

n сохранение или увеличение повышенного функционального тонуса

n хроническое воспаление или раздражение

n стимулирование сенсибилизаторов нервных структур и развитие повышенной реакционной способности (гиперреактивности)

n активация макрофагов для увеличенной васкуляризации и деятельности фибробластов

n фиброз с сокращением / укорачиванием соединительнотканного компонента.

По непрерывным фасциям через все тело любое местное перенапряжение может отражаться и негативно сказываться на отдаленных структурах, поддерживаемых и прикрепляемых самими фасциями (нервы, мышцы, лимфатические и кровеносные сосуды). Вследствие чего могут появиться:

n изменения в эластических тканях (мышцах) с хронической реактивной гипертонией и последующим фиброзом

n торможение антагонистической мускулатуры

n цепные реакции, в которых постуральные мышцы укорачиваются, а фазовые мышцы ослабляются

n ишемия и боль, вызванная продолжительным мышечным напряжением

n биомеханические изменения, нарушение координации движений с суставным ограничением и нарушением равновесия, ретракция фасций

n появление участков с повышенной реакционной способностью неврологических структур (области облегчения) в околоспинных областях и внутри мышц (точки триггер)

n затрата энергии на поддержание гипертонии и как следствие общее утомление

n постоянная обратная связь импульсов с ЦНС, психогенные сигналы тревоги с неспособностью адекватно расслабить отделы с повышенным тонусом

n биологически не замещаемые функциональные модели, вызванные хроническими скелетно-мышечными проблемами и болью.

Эффективность остеопатии заключается в том, что она проделывает обратный путь в восстановлении симптома боли для идентификации первичной причины, прямо воздействие на которую открывает дорогу к ее устранению. Таким образом, будет иметь место возвращение в физиологическую норму параметров напряжения, что будет подразумевать также - но не только - исчезновение симптома боли.

Фасциальная техника по сравнению с традиционной облегчает поиск первопричины. При утонченной пальпации не трудно следовать направлению натяжения фасций и дойти до истинного происхождения проблемы... особенно в случаях, когда врач не может на основе болевой зоны пациента доказать правильность симптоматологии.

Избежать механических воздействий на электротехническое оборудование в современном мире практически невозможно, поэтому должна быть проведена оценка стойкости к влиянию внешних механических факторов. Существует несколько способов подобной проверки, о которых и рассказывают авторы материала.

ВНЕШНЕЕ МЕХАНИЧЕСКОЕ ВОЗДЕЙСТВИЕ
СПОСОБЫ ПОДТВЕРЖДЕНИЯ СТОЙКОСТИ ЭЛЕКТРООБОРУДОВАНИЯ

Валентин Шишенин,
д.т.н.,
Владимир Бакин,
к.т.н.,
Владимир Павлов,
инженер НИЦ 26 ЦНИИ МО РФ,
г. Санкт-Петербург

Научная разработка задач проверки факторов влияния удара и вибрации на различное оборудование была начата еще в 50–60-х годах прошлого века. Проведенные в этой области исследования позволили выявить группы оборудования, наиболее критичные к вибрационным и ударным нагрузкам.
Электротехническое оборудование относится к группе, наиболее чувствительной к вибрационным и ударным (далее – механическим) нагрузкам, т. к. оно имеет в структуре функциональных схем автоматические выключатели (переключатели), электромагнитные пускатели, реле и размыкатели различного типа, показывающие приборы контроля (амперметры, вольтметры и др.). Эти выводы подтверждаются и зарубежными исследованиями .
Механические воздействия на электротехническое оборудование во многом обусловлены динамическими явлениями, возникающими при вращении и возвратно-поступательном движении неуравновешенных элементов и деталей. В свою очередь механические колебания с малой амплитудой часто вызывают резонансные колебания других элементов конструкций. Дополнительным источником механических воздействий на электротехническое оборудование являются факторы техногенного характера, а также внешние природные факторы, в том числе землетрясения. Примеры последних лет подтверждают, что на земле сейчас нет мест, где землетрясения невозможны .
Еще большей потенциальной опасностью для окружающей среды и населения отличаются случаи нарушения нормальной работы и выход из строя от механических воздействий электротехнического оборудования, установленного на опасных производствах и атомных станциях. Поэтому к стойкости электротехнического оборудования на объектах повышенной опасности предъявляются более высокие требования.

Стандарты испытаний
В зависимости от области применения и места установки электротехнические изделия по ГОСТ 17.516.1-90 разделяются на группы механического исполнения. Исходя из этого к ним предъявляются требования по прочности, устойчивости и стойкости к механическим внешним воздействующим факторам различной степени жесткости.
Для аппаратуры, приборов, устройств и оборудования военного назначения требования по стойкости к внешним воздействующим факторам выдвигаются по ГОСТ РВ 20.39.304-98 . Испытания электротехнического оборудования на соответствие требованиям ГОСТ 17.516.1-90 в части стойкости к механическим внешним воздействующим факторам проводятся в соответствии с методами испытаний по ГОСТ 20.57.406-81 и по ГОСТ 16962.2-90 . Испытания электротехнического оборудования военного назначения на соответствие требованиям ГОСТ РВ 20.39.304-98 в части стойкости к механическим внешним воздействующим факторам проводятся в соответствии с методами испытаний по ГОСТ 20.57.305-98 .
В общем случае проверка соответствия электротехнического оборудования выдвигаемым требованиям может осуществляться экспериментальным, расчетным и расчетно-экспериментальным способами. У каждого из них есть свои особенности, достоинства и недостатки.

Экспериментальный способ
Наиболее полные и достоверные данные о прочности, устойчивости и стойкости оборудования к механическому воздействию внешних факторов можно получить только экспериментальным путем. Анализ результатов испытаний электротехнического оборудования на воздействие внешних механических факторов, проведенных за последние 10–20 лет в НИЦ 26 ЦНИИ, позволил установить наиболее характерные отказы и недостатки.
1. Поломки или разрушения узлов крепления, обусловленные:

  • срезом крепежных болтов и шпилек;
  • деформацией опорных узлов, выполненных из профильной или листовой стали;
  • появлением трещин и разрушением чугунных фундаментных рам у основания;
  • появлением трещин в сварных швах опорных узлов агрегатов.
2. Деформация или разрушение целостности корпуса из-за:
  • деформации каркаса, крышек и створок дверей оборудования стоечного и шкафного исполнения;
  • деформации опорных узлов стоек дверей, препятствующей их дальнейшей фиксации в закрытом положении;
  • разрушения и откола фланцевых выступов на чугунных крышках электродвигателей.
3. Деформация или поломка внутренних узлов и элементов в результате:
  • смещения выкатных тележек;
  • разрушения проходных и опорных изоляторов, гетинаксовых плат и текстолитовых корпусов;
  • выпадения дугогасительных камер, электроизмерительных приборов;
  • разрушения нити накала ламп в светотехническом оборудовании и аппаратуре;
  • разрушения подшипников.
4. Ложные срабатывания контактных элементов.

Самопроизвольное замыкание и размыкание контактных элементов аппаратов в момент воздействия нагрузки может привести к отключению важных технических систем и нарушению технологических процессов.
По объективным причинам в России за последние пятнадцать лет произошло значительное сокращение числа функционирующих испытательных лабораторий и испытательных центров и, как следствие, количества испытательных средств, воспроизводящих механические, в том числе и сейсмические, воздействия.
Следует также отметить большую изношенность парка испытательных средств на механические воздействия, относительно небольшие размеры испытательных столов и недостаток многокомпонентных установок.
Фактически отсутствует возможность испытания крупногабаритного оборудования с линейными размерами более 3 м и массой более 3 т на вибрационные воздействия и удар.
А как показывает практика, уникальное крупногабаритное и массивное оборудование из-за своих инерционных характеристик хуже переносит механические воздействия и поэтому нуждается в обязательной проверке на воздействие ожидаемых внешних механических факторов. Аналогичным образом обстоят дела с испытательными средствами для проверки на воздействия, адекватные интенсивным землетрясениям. В бывшем СССР функционировало пять крупных сейсмоплатформ программного действия, оснащенных гидравлическими приводами. В последние годы сейсмоплатформы, расположенные на территории Российской Федерации, практически не работали, и остается неясным, каковы необходимые объемы ассигнований для восстановления их работоспособности и модернизации.

Расчетный способ
Существенным недостатком использования экспериментального способа является его зависимость от ограниченных возможностей испытательного оборудования. Поэтому в случае необходимости проведения оценки прочности к механическим воздействиям образцов электротехнического оборудования, изготовленных из материалов с известными характеристиками, применяют расчетный способ. Этому способствует современное развитие методов моделирования и расчета, программных средств и вычислительной техники. Неоспоримое преимущество расчетного пути определения прочности заключается в том, что его применение не ограничено размерами и максимальной массой рассчитываемого оборудования. Кроме того, по сравнению с экспериментальным путем расчетный имеет достаточно низкую себестоимость.
Среди основных недостатков данного метода определения прочности можно подчеркнуть следующие:

  • расчетным путем практически нельзя оценить устойчивость работы электротехнического оборудования во время воздействия внешнего механического фактора;
  • практически нельзя подтвердить соответствие выдвигаемым требованиям по прочности к воздействию внешних механических факторов для образцов оборудования с нелинейными характеристиками и сложных систем электротехнического оборудования;
  • точность определения прочности зависит от принятой расчетной модели, квалификации специалистов-расчетчиков, применяемых программных продуктов и методик.
Расчетно-экспериментальный способ
Учитывая технические возможности существующих испытательных средств, испытание сложной электротехнической системы на стойкость при воздействии механических факторов может оказаться фактически нереализуемым или потребует значительных материальных затрат, а оценка стойкости системы в целом расчетным путем – невозможной. В этом случае используется расчетно-экспериментальный способ.
На вибродинамическом стенде были проведены испытания шкафов на стойкость к воздействию синусоидальной вибрации с указанными амплитудами виброперемещения и виброускорения в диапазоне от 7 до 100 Гц. Как известно, виброиспытания в диапазоне от 1 до 5 Гц представляют сложность из-за отсутствия вибродинамических стендов необходимой грузоподъемности. Во время испытаний с помощью установленных в определенных местах шкафов трех датчиков регистрировались параметры ускорений. Параллельно были разработаны расчетные модели шкафов и проведены расчеты на аналогичное воздействие.

Пример из практики
Была поставлена задача произвести оценку стойкости группы шкафов электротехнического оборудования с максимальными габаритами 600х800х2000 мм и максимальной массой 250 кг к воздействию синусоидальной вибрации в диапазоне от 1 до 100 Гц, с амплитудой виброускорения 7 м/с2 от 1 до 35 Гц и с амплитудой виброускорения 10 м/с2 от 35 до 100 Гц.

После испытаний было произведено сравнение расчетных и экспериментальных данных в диапазоне частот от 7 до 100 Гц и выявлена достаточная сходимость результатов расчета и испытаний. Испытания показали стойкость шкафов к испытательному воздействию в диапазоне от 7 до 100 Гц. После испытаний были проведены расчеты шкафов на проверенных расчетных моделях на воздействие синусои-дальной вибрации в диапазоне от 1 до 7 Гц. Полученные по расчету в установленных точках кинематические параметры не превышали параметров движения, зарегистрированных в этих же точках во время испытаний. Поэтому по результатам расчетно-экспериментальной оценки был сделан положительный вывод о стойкости оборудования в диапазоне от 1 до 100 Гц при воздействии заданной синусоидальной вибрации.

Расчетно-экспериментальный – это наиболее универсальный способ определения стойкости (прочности, устойчивости) образцов оборудования и их систем к внешним механическим воздействующим факторам. Он сочетает достоинства и частично исключает недостатки расчетного и экспериментального способов, однако его применение требует достаточного объема необходимых исходных и экспериментальных данных, корректности используемых методов и методик, высокой квалификации специалистов.

Несколько советов производителям
Повышение стойкости электротехнического оборудования к воздействию внешних механических факторов может осуществляться за счет:

  • применения оптимальных схемных решений;
  • применения в оборудовании стойких комплектующих;
  • уменьшения габаритов изделий;
  • рациональной компоновки и крепления комплектующих изделий, повышения коэффициента заполнения;
  • применения унифицированных каркасов оптимального профиля;
  • совершенствования запорных устройств дверей и крышек шкафного оборудования;
  • устройств дополнительного закрепления в верхней точке изделия;
  • расчета узлов штатного крепления оборудования;
  • контроля при монтаже необходимого усилия затяжки болтовых соединений.
Литература
1. Вибрации в технике. Справочник в 6 томах. – Т. 3. Колебания машин, конструкций и их элементов. – М.: Машиностроение, 1980.
2. Coloiaco A.P., Elsher E. G. Sine-beat tests verifies switchgear control equipment// IEEE Trans. Power Appar. and Syst. – 1973. – Vol. 93, N2. - P. 751-758.
3. Кириллов А.П., Амбриашвили Ю.К. Сейсмостойкость атомных электростанций. – М.: Энергоатомиздат, 1985.
4. ГОСТ 17.516.1-90 «Изделия электротехнические. Общие требования в части стойкости к механическим внешним воздействующим факторам».
5. ГОСТ РВ 20.39.304-98 «Требования по стойкости к внешним воздействующим факторам». 6. ГОСТ 20.57.406-81 «Изделия электронной техники, квантовой электроники и электротехнические».
7. ГОСТ 16962.2-90 «Изделия электротехнические. Методы испытаний на стойкость к механическим внешним воздействующим факторам».
8. ГОСТ РВ 20.57.305-98 «Методы испытаний на воздействие механических факторов».
9. Бакин В.А., Беляев В.С., Виноградов В.В., Сирро В.А. Испытание строительных конструкций и крупногабаритного оборудования на сейсмические воздействия//Сейсмостойкое строительство. – М.: ВНИИНТПИ, 1996. – Вып. 6. – С. 3–10.

Р Е Ш Е Н И Е

Именем Российской Федерации

Суд в составе: мирового судьи судебного участка № 44 Центрального района города Братска Иркутской области Заугольниковой Е.В.,

при секретаре Ляшенко Н.Г.,

с участием истца Шерешковой Н.А.,

в отсутствие представителя,

представителя ответчика,

рассмотрев в открытом судебном заседании гражданское дело по иску в интересах Шерешковой к о защите прав потребителей

У С Т А Н О В И Л:

(далее - осуществляющая в соответствии со ст. Закона РФ «О защите прав потребителей», защиту прав и законных интересов отдельных потребителей, обратилась в суд в интересах Шерешковой к с исковым заявлением о защите прав потребителей, указав в обоснование иска, что в 12 февраля 2016 года обратилась Шерешкова, которая указала, что 26 мая 2015 года в приобрела, который 26 мая 2015 года она застраховала у представителя страховщика (, ИНН). При заключении договора страхования Шерешковой Н.А. был выдан страховой полис, являющийся подтверждением договора страхования на условиях и в соответствии с «Правилами страхования электронной техники» утвержденными Приказом от 31.07.2014 г. № 209-од. В соответствии с полисом, Шерешкова Н.А., в случае наступления страхового случая, является выгодоприобретателем.

18 июля 2015 года, в результате неумышленных действий, телефон получил внешние повреждения дисплейного модуля (экрана) телефона, которые выразились в том, что он не выводил информацию, а отображал пятна «радужной» расцветки, а также имелась очень тонкая трещина стекла дисплейного модуля, которая отображена на фотографии, направленной Шерешковой Н. А. в адрес Для определения повреждений и стоимости ремонта, Шерешкова Н. А. обратилась в авторизированный сервис центр где 18 августа 2015 года была проведена диагностика (акт выполненных работ № 055124 от 18.08.2015 г.), за что Шерешкова Н. А. заплатила 450 рублей, после чего было выдано техническое заключение о том, что требовалась замена дисплейного модуля и стоимость работ по ремонту, с учетом стоимости запасных частей, составила 5950 рублей. Данная сумма была оплачена Шерешковой Н.А. авторизированному сервис центру. После замены дисплейного модуля, телефон был исправен и работает. То есть Шерешкова Н.А., как страхователь, в соответствии со 962 ГК РФ, при наступлении страхового случая, предусмотренного договором имущественного страхования, приняла разумные и доступные в сложившихся обстоятельствах меры, чтобы уменьшить возможные убытки. Шерешкова Н.А. принимала меры досудебного урегулирования спора, она направила в адрес страховщика заявление о наступлении страхового случая. К письму было приложено техническое заключение № 684 выданное в а также фото телефона, заявление о наступлении страхового случая (установленная страхователем форма заявления прилагалась к полису), а также копии других документов, подтверждающих наличие механического повреждения телефона и оплату ремонта. В ноябре 2015 года из поступило письмо от 06.11.2015 г. № 07/02-08/49-02-05/30934 «Об отказе в выплате страхового возмещения по делу № ММ НФЛ - 15 - 20841». В декабре 2015 года Шерешковой Н. А. была направила претензия в адрес на которую в конце января 2016 года из поступил ответ от 18.01.2016 г. № 07/02-08/31-03-02/1201«О повторном отказе в выплате страхового возмещения по выплатному делу ММ -НФЛ-15-20841», на том основании что, на фотографии не видно внешнего механического повреждения, а в "соответствии с п. 3.4 Особых условий не являются страховым случаем повреждения в виде царапин, сколов и других косметических повреждений, а также внутренние поломки без внешних повреждений".

В соответствии с п. 3.2.1.8.1. Особых условий, под «механическим воздействием» необходимо понимать внешнее воздействие предметами на поверхность застрахованного имущества». Безусловно удар телефона об пол, случайно, упавшего со стола, следует считать внешним механическим воздействием на поверхность застрахованного телефона, поэтому, в соответствии с п. 3.2.1.8. Особых условий, произошедшее является страховым случаем, так как застрахованному имуществу (телефону) причинен ущерб «в форме его повреждения/уничтожения в результате механического воздействия». Внешние и внутренние повреждения телефона были получены одномоментно, при описанных выше обстоятельствах и таким образом застрахованному имуществу (телефону) был причинен ущерб в виде его внешнего и внутреннего повреждения в результате механического воздействия, что, в соответствии с приложением № 5 к приказу от 26.09.2012 № 283 -од Особые условия страхования по страховому 3.2.1.8.1 является страховым случаем. При этом, ссылки страховщика на то, что на фотографии не видно трещины, являются необоснованными, поскольку в соответствии с полисом Шерешкова Н.А. не обязана была направлять в адрес Страховщика вообще ни каких фотографий. В соответствии со ст. Раздел III. Судьи, органы, должностные лица, уполномоченные рассматривать дела об административных правонарушениях > Глава 23. Судьи, органы, должностные лица, уполномоченные рассматривать дела об административных правонарушениях > Статья 23.49. Федеральный орган исполнительной власти, осуществляющий федеральный государственный надзор в области защиты прав потребителей" target="_blank">23 ФЗ «О защите прав потребителей» просит взыскать в пользу истца Шерешкова Н.А. неустойку в сумме 1728 рублей, а также моральный вред в сумме 3000 рублей, исходя из того, что заключая договор страхования, истец рассчитывала на обеспечение возможности быстрого и эффективного ремонта приобретенного ею телефона в случае его поломки при наступлении страхового случая. Незаконный отказ в страховой выплате причинил ей нравственные страдания, поскольку она поняла, что страховщик ее фактически обманул, и заключая договор только намеревался получить от нее страховую премию без намерения в будущем исполнять договор страхования, также стоимость телефона и сумма страховой премии являются существенными для Шерешковой Н.А. В ситуации, когда страховщик отказал в страховой выплате, уплаченная потребителем страховая премия только увеличила расходы Шерешковой Н.А. на приобретение телефона без получения какого-либо преимущества для нее, на которое она рассчитывала заключая договор страхования. Кроме того, оплата стоимости ремонта является существенной для Шерешковой Н.А., поскольку не ремонтировать телефон она не могла - ребенок должен иметь телефон в современных условиях, но Шерешкова Н.А. надеялась получить сумму страховки и компенсировать за счет них свои траты на ремонт. Получив незаконный отказ в страховой выплате и не получив компенсацию своих расходов на ремонт телефона истец была вынуждена сократить свои расходы на другие жизненно важные цели, в том числе ограничить себя в приобретении продуктов питания для себя и своей семьи. Таким образом, незаконный отказ в страховой выплате повлек для Шерешковой Н.А. нравственные страдания, и ответчик обязан возместить причиненный моральный вред. Руководствуясь ст. , ст.ст. , Закона РФ «О защите прав потребителей» просит суд взыскать в пользу потребителя Шерешковой: 5950 (пять тысяч девятьсот пятьдесят) рублей в счет возврата уплаченной ею стоимости ремонта застрахованного телефона, 450 рублей за проведение диагностики в 3000 рублей - компенсацию морального вреда; неустойку в размере 1728 рублей, которая рассчитывается следующим образом: 1200 рублей (размер страховой премии) ? 1% ? 144 дня (период просрочки с 06.11.2015 г. - момент отказа в страховой выплате и до 23.03.2016 г.- день подачи искового заявления) = 1728 рублей, а также взыскать с ответчика в пользу Шерешковой штраф, предусмотренный ч. 6 ст. Закона РФ «О защите прав потребителей».

В судебное заседание, действующий на основании доверенности, не явился, представил заявление о рассмотрении дела в его отсутствие.

В судебном заседании истец Шерешкова исковые требования поддержала, суду пояснила, что 26 мая 2015 года в при покупке телефона, она заключила договор страхования с представителем страховщика. При заключении договора страхования ей был выдан страховой полис. 18 июля 2015 года когда она приезжала к дочери, где последняя работала вожатой, телефон случайно уронили со стола, в результате чего он получил внешние повреждения дисплея. Внешне на дисплее была очень тонкая трещина, поскольку у телефона прочное стекло, однако сам телефон перестал выводить информацию, отображал пятна «радужной» расцветки. Так как в отсутствует офис страховой компании, то она позвонила ответчику по телефону, сообщила о наступлении страхового случая. Ей было рекомендовано обратиться в сервис для определения характера повреждений и стоимости ремонта, в связи с чем, она обратилась в авторизированный сервис центр где 18 августа 2015 года была проведена диагностика, за проведение которой истец заплатила 450 рублей, после чего было выдано техническое заключение № 684 о том, что требовалась замена дисплейного модуля и стоимость работ по ремонту, с учетом стоимости запасных частей, составит 5950 рублей. 14 сентября она направила ответчику электронной почтой заключение, другие документы, далее переписка велась электронной почтой, у ней дополнительно запросили снимки телефона, после чего в выплате страхового возмещения ей было отказано, поскольку на фотографии телефона, направленной ею в страховую компанию, внешних повреждений дисплея не зафиксировано. На фотографиях действительно трещину сильно не видно, поскольку она была тонкая, однако в подтверждение наличия повреждения ею и направлялся технический акт. Считает, что ей необоснованно было отказано в выплате страхового возмещения. Просит удовлетворить заявленные исковые требования в полном объеме. Также пояснила, что первоначально было выдано техническое заключение, что ремонт дисплейного модуля составил 5950 рублей, однако в дальнейшем ремонт ей обошелся в 5050 рублей.

Представитель ответчика - , действующий на основании доверенности, в судебное заседание не явился, будучи надлежаще извещен о времени и месте рассмотрении дела, представил отзыв на исковое заявление, в котором указал, что договор страхования от 26.05.2015 г., заключенный между и Шерешковой Н.А., был заключен на условиях и в соответствии с «Правилами страхования электронной техники» от 31.07.2014 г. и Особыми условиями страхования по страховому продукту «Преимущество для техники//портативная+». В соответствии с п. 1 ст. условия, на которых заключается договор страхования, могут быть определены в стандартных правилах страхования соответствующего вида, принятых, одобренных или утвержденных страховщиком либо объединением страховщиков (правил страхования). В соответствии с записью, сделанной в Полисе, с Правилами и Условиями страхователь Шерешкова Н.А. была ознакомлена и согласна. После обращения истца в с заявлением о наступлении события, имеющего признаки страхового, было принято решение отказать в выплате страхового возмещения, о чем ей был направлен официальный отказ от 18.01.2016 г. № 07/02-08/31-03-02/1201, на основании со статьями , Гражданского кодекса Российской Федерации. В соответствии с пп. «е» п. 3.4 Особых условий, не является страховым случаем повреждение в виде: царапин, сколов и других косметических повреждений застрахованного имущества, не влияющего на его работоспособность; внутренние поломки без внешних повреждений, в том числе поломки в результате дефектов производителя. Тот факт, что в настоящий момент телефон отремонтирован по заявленному событию, не позволяет объективно рассмотреть заявленные требования истца, в том числе провести экспертизу. На фотоматериалах заявленные повреждения отсутствуют, а заявленные компанией неисправности, не являются относительными и безусловными доказательствами того, что объект страхования был в неисправном состоянии. Договор страхования, в соответствии со ст. . Заключался между двумя сторонами, условия договора истца устраивали и до наступления события от 18.07.2015 г. не были оспорены, не были признаны недействительными. рассмотрело заявление страхователя Шерешковой Н.А. в рамках договора страхования, в соответствии со ст. по представленным документам. Согласно п. 1 ст. , при заключении договора имущественного страхования между истцом и было достигнуто соглашение об определенном имуществе либо ином имущественном интересе, являющемся объектом страхования, о характере события, на случай наступления, которого осуществляется страхование (страхового случая), о сроке действия договора. Так, согласно п.4 договору страхования объектом страхования был определен телефон; страховыми рисками, согласно п. 5 договора определены: пожар, взрыв, удар молнии, воздействие жидкости, стихийные бедствия, воздействия посторонних предметов, воздействие в результате ДТП, разбойное нападение, грабеж, хулиганство, кража; сумма страхового возмещения - 11490,0 рублей; период действия договора 1 год (п. 7 договора). В соответствии с п. 1 ст. Закона РФ от 27.11.1992 г.; 4015-1 «Об организации страхового дела в Российской Федерации», страховым риском является предполагаемое событие, на случай наступления, которого проводится страхование. Событие, рассматриваемое в качестве страхового риска, должно обладать признаками вероятности и случайности его наступления. Соответственно по заявленным истцом требованиям, не брало на себя дополнительных рисков. Что касается повреждений, указанных в претензии, страхователем не было предоставлено Страховой компании документов, подтверждающих заявленное событие. Согласно п.7 Условий страхования, страхователь при наступлении события, имеющего признаки страхового, предоставляет документы, которые должны содержать сведения, позволяющие однозначно установить застрахованное устройство (Марк, модель, IMEI/Serial). Согласно п. 6.1.5 Условий страхования, по требованию страховщика страхователь представляет документы, необходимые для подтверждения факта и причин наступления страхового случая и определения размера ущерба, причиненного застрахованному имуществу (в соответствии с п.7 Условий), фотографии поврежденного имущества. С учетом представленных доводов, в случае удовлетворения исковых требований Шерешековой Н.А., просит применить последствия ст. , при взыскании штрафа от суммы удовлетворенной судом. В целях предотвращения неосновательного обогащения со стороны страхователя, согласно п. 8.5 Условий страхования, полная гибель застрахованного имущества признается в случае, если общая стоимость восстановительного ремонта составит не менее 80 % стоимости застрахованного имущества. Так, до настоящего времени истец не принял решения отказаться от объекта страхования. Просит в удовлетворении заявленных требований отказать в полном объеме.

Выслушав истца Шерешкову Н.А., изучив представленные возражения представителя ответчика, исследовав представленные доказательства, суд приходит к следующему.

Судом не усматривается законных оснований для снижения данной суммы штрафа.

Р Е Ш И Л:

Исковые требования удовлетворить частично.

Взыскать с в пользу Шерешковой 5050 рублей - в счет возврата уплаченной стоимости ремонта застрахованного телефона, 450 рублей - за проведение диагностики в 450 рублей, неустойку в размере 1200 рублей, компенсацию морального вреда в размере 1000 рублей

В удовлетворении исковых требований о взыскании стоимости ремонта в размере 900 рублей, неустойки в размере 528 рублей отказать.

Взыскать штраф за несоблюдение добровольного порядка удовлетворения требований потребителя в пользу Шерешковой в размере 1925 рублей, в пользу в размере 1925 рублей

Взыскать с госпошлину в бюджет муниципального образования города области в размере 700 рублей.

Решение может быть обжаловано в апелляционном порядке в Братский городской суд Иркутской области через мирового судью судебного участка № 44 Центрального района города Братска Иркутской области в течение месяца.

Заявление о составлении мотивированного решения суда может быть подано в течение трех дней со дня объявления резолютивной части решения суда, если лица, участвующие в деле, их представители присутствовали в судебном заседании; в течение пятнадцати дней со дня объявления резолютивной части решения суда, если лица, участвующие в деле, их представители не присутствовали в судебном заседании

Судебная практика по применению нормы ст. 333 ГК РФ

Устойчивость приборной аппаратуры к механическим воздействиям рассмотрим на примере авиационных приборов и устройств, так как они работают в наиболее жестких условиях комплексного воздействия всех видов механических факторов .

Основными источниками внешних динамических воздействий на авиационную приборную аппаратуру (АПА) являются летательные аппараты (ЛА), на которых она установлена и окружающая среда. Возбуждение динамических воздействий от ЛА называют кинематическим, а от внутренних устройств ЛА - силовым. Силовые воздействия наиболее часто являются следствием работы силовых установок энергоснабжения, устройств кондиционирования, гидравлических систем, подачи топлива и др., т.е. электромеханических устройств, с возвратно-поступательными движущимися массами или неуравновешенными вращающимися роторами.

К механическим воздействиям относятся: линейные перегрузки, вибрации, удары.

При передаче от источника к АПА и ее элементам внешние механические воздействия трансформируются - изменяются амплитудно-частотные характеристики колебаний, амплитуда и длительность ударных импульсов; возникают переходные колебательные процессы, сопровождающие воздействие длительных линейных нагрузок.

Перегрузкой называют отношение действующего ускорения к ускорению свободного падения. Линейные перегрузки, за исключением кратковременных, не могут быть устранены или ослаблены. Поэтому работоспособность конструкций обеспечивается за счет повышения жесткости и прочности элементов, что, как правило, ведет к увеличению массы конструкций АПА.

Под вибрацией АПА понимают механические колебания ее элементов или конструкции в целом. Вибрация может быть периодической или случайной. В свою очередь периодическая вибрация подразделяется на гармоническую и полигармоническую, а случайная - на стационарную, нестационарную, узкополосную и широкополосную.

Вибрацию принято характеризовать виброперемещением, виброскоростью и виброускорением.

Виброперемещение при гармонической вибрации определяется как

где Z - амплитуда виброперемещения; - частота вибраций.

Виброскорость и виброускорение находят в результате дифференцирования (5.1):

Виброускорение при гармонической вибрации опережает по фазе виброперемещение на угол , виброскорость на угол .

Амплитуды виброперемещения Z , виброскорости , виброускорения и угловая частота колебаний являются основными характеристиками гармонической вибрации. Однако кроме них гармоническую вибрацию можно характеризовать вибрационной перегрузкой

. (5.2)

Если в (5.2) амплитуда виброперемещения выражена в мм, а ускорение силы тяжести в , то соотношение для вибрационной перегрузки можно записать в виде , где - круговая частота вибраций.

Полигармоническая или сложная периодическая вибрация может быть представлена в виде суммы гармонических составляющих.

Для случайной вибрации характерно то, что ее параметры (амплитуда виброперемещения, частота и др.) изменяются во времени случайно. Она может быть стационарной и нестационарной. В случае стационарной случайной вибрации математическое ожидание виброперемещения равно нулю, математические ожидания виброскорости и виброускорения постоянны. В случае нестационарных вибраций статистические характеристики не постоянны.

Кроме вибрации, конструкция может подвергаться ударным воздействиям, возникающим при эксплуатации, транспортировке, монтаже и т.д. При ударе элементы конструкции испытывают нагрузки в течение малого промежутка времени , ускорения достигают больших значений и могут привести к повреждениям элементов. Интенсивность ударного воздействия зависит от формы, амплитуды и длительности ударного импульса.

Форма ударного импульса определяется зависимостью ударного ускорения от времени (рис. 5.1). При анализе ударных воздействий реальную форму ударного импульса заменяют более простой, например прямоугольной, треугольной, полусинусоидальной.

За амплитуду ударного импульса принимают максимальное ускорение при ударе. Длительностью удара называют интервал времени, в течение которого действует ударный импульс.

Последствием удара являются возникающие в элементах конструкции затухающие колебания. Поэтому на практике возникает необходимость в защите конструкций АПА одновременно от ударов и вибраций, так как в реальных условиях эксплуатации конструкции часто подвергаются комплексным механическим воздействиям, что должно найти отражение

при конструировании средств защиты.

Элементы конструкции АПА характеризуются своими механическими резонансными частотами, меняющимися в широких пределах в зависимости от массы и жесткости закрепления составных частей. Во всех случаях нельзя допускать образования в поле нагрузок механической колебательной системы - это касается монтажных плат, панелей, кожухов, монтажных проводов и других частей конструкции АПА.

Под полем нагрузок понимаются механические нагрузки системы, вызванные колебаниями различных частот и амплитуд в процессе испытаний, монтажа, транспортировки и эксплуатации.

В результате механических воздействий в элементах конструкции АПА могут происходить обратимые и необратимые изменения.

Обратимые изменения характерны для электрорадиоизделий АПА, что приводит к нарушению устойчивости и ухудшению качества функционирования аппаратуры. Факторы, вызывающие обратимые изменения, можно объединить в следующие группы в зависимости от физики протекающих в конструкции процессов:

Деформации в активных и пассивных компонентах, приводящие к изменению их параметров;

Нарушения электрических контактов в разъемах и неразъемных соединениях, вызывающие изменение омического сопротивления контактов;

Изменение параметров электрических, магнитных и электромагнитных полей, которое может привести к нарушению условий электромагнитной совместимости в конструкции.

Необратимые изменения свойственны конструктивным элементам АПА, связаны с нарушением условий прочности и проявляются в механических разрушениях элементов. В наибольшей степени разрушениям подвержены элементы, предварительно нагруженные при сборке и электромонтаже (болты,

винты, заклепки, сварные швы с остаточными термическими напряжениями, объемные проводники с излишним натяжением и т.п.).

К необратимым изменениям, происходящим в конструктивных элементах АПА при механических воздействиях, относятся усталостные разрушения.

Усталостью называется процесс постепенного накопления повреждений в материале детали под действием переменных напряжений. Механизм этого процесса связан со структурной неоднородностью материала (отдельные зерна неодинаковы по форме и размерам, по-разному ориентированы в пространстве, имеют включения, структурные дефекты). В результате этой неоднородности в отдельных неблагоприятно ориентированных зернах (кристаллах) при переменных напряжениях возникают сдвиги, границы которых со временем расширяются, переходят на другие зерна и, охватывая все более широкую область, развиваются в усталостную трещину. Усталостная прочность материалов зависит от величины и характера изменения напряжений, от числа циклов нагружения.

Конструкции АПА, работающие в условиях механических воздействий, должны отвечать требованиям прочности и устойчивости. Под прочностью (вибро- и ударопрочностью) к воздействию механических факторов подразумевается способность конструкций выполнять функции и сохранять значения параметров в пределах норм, установленных стандартами, после воздействия механических факторов.

Под устойчивостью (вибро - и удароустойчивостью) к воздействию механических факторов понимают способность конструкции выполнять заданные функции и сохранять свои параметры в пределах норм, установленных стандартами, во время воздействия механических факторов.

Тре"ние вне"шнее , механическое сопротивление, возникающее в плоскости касания двух соприкасающихся тел при их относительном перемещении. Сила сопротивления F , направленная противоположно относительно перемещению данного тела, называется силой трения, действующей на это тело. Т. в. - диссипативный процесс, сопровождающийся выделением тепла, электризацией тел, их разрушением и т.д.

Различают Т. в. скольжения и качения. Характеристика первого - коэффициент трения скольжения f c - безразмерная величина, равная отношению силы трения к нормальной нагрузке; характеристика второго - коэффициент трения качения f k представляет собой отношение момента трения качения к нормальной нагрузке. Внешние условия (нагрузка, скорость, шероховатость, температура, смазка) влияют на величину Т. в. не меньше, чем природа трущихся тел, меняя его в несколько раз.

Трение скольжения. Если составляющая приложенной к телу силы, лежащая в плоскости соприкосновения двух тел, недостаточна для того, чтобы вызвать скольжение данного тела относительно другого, то возникающая сила трения называется неполной силой трения (участок OA на рис. ); она вызвана малыми (~ 1 мкм ) частично обратимыми перемещениями в зоне контакта, величина которых пропорциональна приложенной силе и изменяется с увеличением последней от 0 до некоторого максимального значения (точка А на рис. ), называемого силой трения покоя; эти перемещения называются предварительными смещениями. После того как приложенная сила превысит критическое значение, предварительное смещение переходит в скольжение, причём сила Т. в. несколько уменьшается (точка A 1) и перестаёт зависеть от перемещения (сила трения движения).

Вследствие волнистости и шероховатости каждой из поверхностей, касание двух твёрдых тел происходит лишь в отдельных «пятнах», сосредоточенных на гребнях выступов. Размеры пятен зависят от природы тел и условий Т. в. Более жёсткие выступы внедряются в деформируемое контртело, образуя единичные пятна реального контакта, на которых возникают силы прилипания (адгезня, химические связи, взаимная диффузия и др.). В результате приработки пятна касания бывают «вытянуты» в направлении движения. Диаметр эквивалентного по площади пятна касания составляет от 1 до 50 мкм в зависимости от природы поверхности, вида обработки и режима Т. в. При скольжении эти пятна наклоняются под некоторым углом к направлению движения, материал раздвигается в стороны и подминается скользящей неровностью, а пятна прилипания, образующиеся из поверхностных плёнок, покрывающих твёрдое тело, называются мостиками, непрерывно разрушаются (срезаются) и формируются вновь. В этих пятнах реализуются напряжения лишь в несколько раз меньшие теоретической прочности материала. Сопротивление оттеснению материала при сдвиге зависит от безразмерной характеристики h/R - отношения глубины h внедрения единичной неровности, моделированной сферическим сегментом, к его радиусу R . Это отношение определяет механическую составляющую силы Т. в.

Большей частью описанное формоизменение упруго и рассеяние энергии обусловлено потерями на гистерезис . В пятнах касания возникают силы межмолекулярного взаимодействия, потери на преодоление которого оцениваются безразмерной характеристикой t/s s , где t - сдвиговое сопротивление молекулярной связи, s s - предел текучести основы. Молекулярное сдвиговое сопротивление t = t 0 +bP r , где t 0 - прочность мостика при отсутствии сжимающей нагрузки, P r - фактическое давление на пятне касания, b - коэффициент упрочнения мостика. Каждое пятно касания (так называемая фрикционная связь) существует лишь ограниченное время, так как выступ выходит из взаимодействия. Продолжительность жизни фрикционной связи - важная характеристика, так как определяет температуру, развивающуюся при Т. в., износостойкость и др. Таким образом, процесс Т. в. представляет собой двойственный процесс - с одной стороны он связан с диссипацией энергии, обусловленной преодолением молекулярных связей, с другой - с формоизменением поверхностного слоя материала внедрившимися неровностями.

Общий коэффициент Т. в. определяется суммой механической и молекулярной составляющих

где К - коэффициент, связанный с расположением выступов по высоте, a г - коэффициент гистерезисных потерь. Из уравнения следует, что коэффициент Т. в. в зависимости от давления при постоянной шероховатости или от шероховатости при постоянном давлении переходит через минимум. При приработке пар трения устанавливается шероховатость, соответствующая минимуму коэффициента Т. в. Для эффективной работы пары трения существенно, чтобы поверхностный слой твёрдого тела имел меньшее сдвиговое сопротивление, чем глубжележащие слои. Это достигается применением различных жидких смазок. В этом случае трущиеся тела разделены слоем жидкости или газа, в котором проявляются объёмные свойства этих сред и вступают в силу законы жидкостного трения, характеризующиеся отсутствием трения покоя. Иногда необходимо иметь ослабленным поверхностный слой самого тела; это достигается применением поверхностно-активных веществ (присадки к смазкам), покрытий из мягких металлов, полимеров или созданием защитных плёнок с пониженным сопротивлением сдвигу.

В зависимости от характера деформирования поверхностного слоя различают Т. в. при упругом и пластическом контактированиях и при микрорезании. В определённых условиях, зависящих от нагрузки и механических свойств каждой пары трения, Т. в. переходит во внутреннее трение , для которого характерно отсутствие скачка скорости при переходе от одного тела к другому. Нагрузка, при которой Т. в. нарушается для данной пары трения, называется порогом внешнего трения.

Трение качения. Значения силы трения качения очень малы по сравнению с силами трения скольжения. Трение качения обусловлено: а) потерями на упругий гистерезис, связанный со сжатием материала под нагрузкой перед катящимся телом; б) затратами работы на передеформирование материала при формировании валика перед катящимся телом; в) преодолением мостиков сцепления. При достаточно протяжённых размерах пятна касания в зоне контакта возникает проскальзывание, приводящее к уже рассмотренному выше трению скольжения. При больших скоростях качения, сопоставимых со скоростью распространения деформации в теле, сопротивление перекатыванию резко увеличивается, и тогда выгоднее переходить к трению скольжения.

Управление трением путём подбора пар трения, конструкций узлов и правильной их эксплуатации - тема новой технической науки, называемой триботехникой.

Лит.: Дерягин Б. В., Что такое трение?, 2 изд., М., 1963; Крагельский И. В., Трение и износ, 2 изд., М.,1968; Дьячков А. К., Трение, износ и смазка в машинах, М., 1958; Трение полимеров, М., 1972; Боуден Ф. и Тейбор Д., Трение и смазка твердых тел, пер. с англ., М., 1968.

И. В. Крагельский.


Значение силы трения в зависимости от относительного смещения трущихся тел при сдвиге, переходящем в скольжение.