Светодиодная мигалка на одном диоде. Мигалки из светодиодов. Мигалка на трех танзисторах со светодиодами

Простые схемы мигающих устройств (мигалок) для светодиодов или лампочек, построенные на основе симметричного мультивибратора. Используются широкодоступные детали, схемы предельно доступны к повторению начинающим радиолюбителям и аматорам в радиоэлектронике.

Подобные схемы мигающих устройств отлично подойдут для оснащения какой-либо игрушки, например для игрушечного автомобиля - прикрепив красный и синий светодиоды сверху и поместив их в небольшой колпачок из органического стекла или прозрачного пластика, таким образом мы превратим простую и скучную машинку в интерактивную игрушку - иммитатора полицейской машины.

Как еще можно использовать мигалку на основе мультивибратора и светодиодов? - все упирается в вашу фантазию, можете сделать какой-то сигнализатор, или же присоединить данную схему к какому-то другому устройству, не ленитесь думать и творить!

Первый вариант мигалки

Схема мигающего устройства (мигалки) предоставлена на рисунке 1. Устройство построено на основе симметричного мультивибратора и содержит минимум деталей. Скорость смены свечения светодиодов можно изменять в зависимости от емкости конденсаторов C1 и C1, а также подбирая сопротивление резисторов R2 и R3. Резисторы R1 и R4 служат для ограничения тока, что проходит через каждый светодиод.

В данной схеме следует учесть такой параметр транзистора как "напряжение насыщения Коллектор-Эмиттер " - это падение напряжения на открытом транзисторе.

Типовые значения напряжений насыщения КЭ для некоторых транзисторов:

  • КТ315 А-Г = 0,4В;
  • КТ315 Д,Е = 1В;
  • КТ3102 А-Е = 0,3В.

Допустим что мы будем использовать транзистор КТ315 с напряжением насыщения 0,4В, рассчитаем напряжение на гасящем резисторе для красного и синего светодиодов:

Uг_красный = 5 - 0,4 - 2 = 2,6В;

Uг_синий = 5 - 0,4 - 3 = 1,6В.

Выполним расчет сопротивления гасящих резисторов:

Rг_красный = 2,6В / 0,02А = 130 Ом;

Rг_синий = 1,6В / 0,02А = 80 Ом.

Таким образом в схеме на рисунке 1 для синего светодиода используем гасящий резистор R4 сопротивлением 80 Ом, а для красного - резистор R1 сопротивлением 130 Ом. Мощность каждого резистора - от 0,125 Ватт и выше, какие есть в наличии.

Рис. 1. Принципиальная схема мигающего устройства (мигалки) на транзисторах КТ315.

Если вы хотите питать устройство от источника напряжением больше или меньше 5В то придется рассчитать сопротивление гасящих резисторов R1 и R4, используя закон Ома.

Транзисторы КТ315 можно заменить на другие маломощные со структурой N-P-N, к примеру КТ3102.

Второй вариант мигалки

Второй вариант мигалки на светодиодах не сильно отличается от первого, она представлена на рисунке 2. В устройстве использованы транзисторы P-N-P структуры и в сравнении с предыдущей схемой изменена полярность питания, а также включение светодиодов.

Вместо старых транзисторов МП41 можно поставить КТ361 или КТ3107, при этом сопротивления резисторов R2 и R3 нужно поднять до 27-30 кОм.

Рис. 2. Принципиальная схема мигающих светодиодов с использованием транзисторов МП41.

Мигалка на трех танзисторах со светодиодами

Приведенная ниже схема мигалки может быть использована в качестве гирлянды к новогодней елке или же для "оживления" какой-то игрушки.

Рис. 3. Принципиальная схема мигалки на транзисторах и светодиодах.

Вместо транзисторов КТ342 можно использовать большинство маломощных резисторов, например подойдут те же КТ315. Можно использовать также и КТ361, в этом случае придется изменить на схеме полярность включения батареи питания, электролитических конденсаторов и светодиодов.

Схема мигалки для светодиодных лент

Рис. 4. Схема мигалки для светодиодных лент, простой мультивибратор на транзисторах.

Схема повторяет приведенную на рисунке 1, только оан умощнена полевыми транзисторами для питания светодиодных лент.

Заключение

Представленные здесь схемы мигающих устройств (мигалок) очень просты в изготовлении, содержат минимум деталей, которые можно без проблем заменить на другие с похожими параметрами. Собрав такую мигалку можно позабавить малышей, добавить интерактивности к какой-то игрушке, а у кого-то это может стать первой конструкцией и первым шагом в мир радиоэлектроники.

Мигающий светодиод может быть реализован и использован несколькими способами, от чего зависит и его дальнейшая область применения. Схемы могут состоять из нескольких диодов, транзисторов, подключаться к различным источникам питания, даже к батарейкам, по-разному моргать. Собрать большинство из них можно своими руками, но иногда нужно подогнать теоретическую базу.

Один из самых простых способов реализации моргающих светодиодных индикаторов может успешно имитировать сигнализацию для автомобиля. Для авто премиум-класса это не очень актуально, а для менее элитной техники, общая стоимость которой не окупает установку дорогостоящей системы оповещения, такая схема будет в самый раз. Мигалка на светодиодах в таком случае будет оптимальным вариантом.

Мигающий светодиод как сигнализация

Купить моргающий диод для авто – избавить себя от кропотливого просиживания над обработкой платы. Это не всегда верно, но в данном случае очень подходит. Важно разобраться, почему почему мигает светодиод.

На вид такой моргающий -индикатор невозможно отличить от обычного светодиода, который светится постоянно. При подаче напряжения он начинает мигать пару раз в секунду. Наличие мультиметра также поможет различить полупроводниковые приборы. В прямом направлении моргающий диод демонстрирует небольшое сопротивление, а в обратном – светодиод с обычным показателем падения напряжения.

Немного о самих мигающих светодиодах

Основой мигания светодиода служит небольших размеров чип, который состоит из высокочастотного задающего генератора. Последний работает совместно с делителем на логических элементах, давая возможность получать вместо высоких значений частоты требуемые 1-3 Гц.

Чтобы реализовать низкочастотный генератор, необходимо использовать конденсатор с большой ёмкостью. Решив собрать схему своими руками, весьма проблематично было бы использовать полупроводник с большой площадью. Почему – да он просто не уместится в корпусе светодиода.

На полупроводниковой подножке размещены не только генератор и делитель, но также электронный ключ и диод-протектор. Мигающие светодиоды с напряжением питания 3-12В оборудуются также ограничительным резистором, а низковольтным он не требуется.

Основное назначение диода-протектора заключается в предотвращении поломки микросхемы в случае переплюсовки её питания.

При подаче напряжения автомобильной сети номинал токоограничивающего резистора должен выбираться из диапазона 3-5кОм. Подключив светодиод своими руками можно отметить, что он потребляет ток не только при мерцании, но и в пазах.

Сборка сигнализации своими руками

Определившись с тем, как устроены мигающие светодиоды, как они работают, и почему мигают, можно приступить непосредственно к монтажу.

Для сборки потребуется 2 гибких многожильных проводка небольшого диаметра. Предпочтительнее выбирать кабели разного цвета, чтобы иметь возможность отличать их при подключении к автомобильной проводке.

Когда резистор и оба провода закреплены, можно поместить схему в толстую полимерную трубку. Окончательный этап монтажа сигнализации своими руками – подключение проводов к «+» и «-» цепи питания автомобиля. Если все мигает как надо, мигалку на светодиодах можно считать удачной.

Сборка схем своими руками на базе светодиодов пользуется огромной популярностью среди автолюбителей. Почему? Диоды дают огромные возможности для тюнинга. Замена любого освещения, внутренней подсветки и многое другое.

Светоизлучающие диоды находят широкое применение в самых разных сферах.

Перед тем как сделать мигающий светодиод самостоятельно, следует учесть все нюансы изготовления такой осветительной конструкции, а также приобрести качественные материалы и подготовить грамотную схему сборки.

Готовые мигающие светодиоды

Мигающие или моргающие , по своей сути, являются завершенными, уже готовыми функциональными устройствами, которые играют роль стандартной световой сигнализации и хорошо привлекают внимание.

Такие световые приборы своими размерами абсолютно не отличаются от габаритов стандартного индикаторного светодиода, а в конструкции устройства предусмотрено наличие полупроводникового генераторного чипа и нескольких дополнительных элементов.

Помимо компактности, преимущества готовых осветителей представлены очень широким диапазоном показателей питающего напряжения, разнообразным цветом излучения и всевозможной периодичностью вспышек, а также высокой экономичностью.

Схемы использования

На данный момент существует несколько вполне доступных для самостоятельной реализации практических схем, которые отличаются количеством и типом радиодеталей.

Первая схема характеризуется наличием маломощного , полярного конденсатора 16В - 470 мкФ, резистора и светодиода. Достаточность питания устройства обеспечивается стандартным источником на 12В. Принцип действия напоминает «лавинный пробой», а ощутимый минус такой схемы представлен необходимостью использовать специальный источник напряжения.

Принципиальная схема вспышек на светодиоде

Для второй схемы характерна сборка, аналогичная транзисторному мультивибратору. Именно этим обусловлена высокая надежность устройства. Принцип функционирования базируется на использовании пары полярных конденсаторов 16 В - 10 мкФ, пары ограничивающих резисторов (R1) и (R4), пары резисторов (R2) и (R3), а также пары световых диодов.

Вторая схема работает в условиях широкого диапазона напряжений при последовательном и параллельном подключении световых диодов, а изменение конденсаторной емкости позволяет получить мультивибратор с различным свечением.

Обычные светодиоды

Современные светодиоды способны стать полноценной заменой лампам накаливания, что обусловлено различными характеристиками таких источников света, изготовленных на основе искусственного полупроводникового кристаллика.

Основные параметры светодиодов представлены:

  • напряжением питания;
  • рабочими токовыми величинами;
  • эффективностью или световой отдачей;
  • температурой свечения или цветом;
  • углом излучения;
  • размерами;
  • сроком деградации.

должны соблюдаться определенные правила. В зависимости от характеристик и типа источника питания, различается пара вариантов подключения устройства к сети 220В: посредством драйвера со стандартным токовым ограничителем или при помощи хорошо стабилизирующего напряжение, специального блока питания.

Сборка конструкций на основе нескольких LED-осветителей предполагает использование схем последовательного или параллельного подсоединения.

Как сделать, чтобы светодиоды мигали

Для самостоятельной сборки мигающего , потребуется приобрести несколько компонентов, представленных:
  • парой резисторов 6.8 на 15 Ом;
  • парой резисторов, имеющих сопротивление 470 на 680 Ом;
  • парой маломощных транзисторов «n-p-n»;
  • парой электрических конденсаторов, имеющих емкость 47 - 100 мкФ;
  • маломощным светодиодом;
  • паяльником бытовым, припоем и флюсом.

На всех радиодеталях зачищаются и лудятся выводные части элементов. Очень важно при включении конденсаторов учитывать полярность. Мигание светового диода обеспечивается цикличностью подачи тока.

При правильной сборке всех элементов, изготовленный осветительный прибор обладает частотой мигания порядка полутора Гц, или примерно пятнадцать вспышек на каждые десять секунд.

Схемы «мигалок» на их основе

Получение простых поочередных вспышек осуществляется при помощи пары транзисторов C945 или аналоговых элементов. В первом случае коллектор располагается в центральной части, а во втором - центр отводится под размещение базы.

Пара мигающих светодиодов и схема с одним диодом собирается в соответствии со стандартной схемой. Частота мигания обеспечивается наличием в схеме конденсаторов (C1) и (C2).

Схема сопротивления p-n переходов

При необходимости выполнить подключение сразу нескольких led-элементов, устанавливается достаточный по мощности PNP-транзистор.

Мигающие светодиоды получаются при подключении выводов к разноцветным элементам, поочередные импульсы обеспечиваются встроенным генератором, а частота моргания напрямую зависит от установленной программы.

Область применения

Моргающие светодиодные источники света, оснащенные стандартным генератором встроенного типа, находят широкое применение в новогодних гирляндах.

Именно последовательная сборка таких изделий, дополненная установленным резистором, имеющим незначительное отличие по номинальным показателям, позволяет добиться сдвига в процессе мигания отдельных элементов электронной цепи.

Итогом такой сборки является оригинальный световой эффект, который совсем не нуждается в добавлении слишком сложного блока для управления. Чаще всего новогодняя гирлянда подключается посредством обычного диодного моста.

Мигающие диодные токоуправляемые световые излучатели востребованы в самых различных современных бытовых приборах и электротехнике, где играют роль стандартных индикаторов. При этом такие индикаторные огоньки сигнализируют об определенном состоянии прибора или уровне заряда. На основе моргающих диодов осуществляется сборка электронных табло, разных рекламных вывесок, всевозможных детских игрушек и очень многих других товаров.

Моргающие диоды прекрасно подходят для создания огромного количества интересных и необычных световых эффектов, включая «бегущую волну».

Как сделать фонарик из светодиодов

Фонари, изготовленные на основе светодиодного источника света, отличаются большей яркостью и экономичностью. Источником питания служит аккумулятор на 12 В. Чтобы сделать такой фонарь своими руками необходимо приобрести:

  • отрезок ПВХ-трубы длиной 50 мм;
  • клеящий состав;
  • пару резьбовых ПВХ-фитингов;
  • резьбовую ПВХ-заглушку;
  • тумблер;
  • небольшой кусок пенополистирольного листа;
  • светодиодную лампочку;
  • изолирующую ленту.

Самодельный фонарик

Работы по сборке выполняются с использованием паяльника, припоя, ножовки и надфиля, наждачной бумаги и бокорезов.

После размещения всех элементов в корпусе из ПВХ-трубы, устанавливается светодиодный источник света, а также монтируются фитинги и заглушка, защищающие фонарь от попадания влаги внутрь.

Собранный по схеме фонарь может быть представлен не только целиковой моделью, но и последовательным соединением сразу нескольких батареек АА или ААА, что обеспечивает оптимальное суммарное напряжение 12 В.

Бегущие огни на светодиодах своими руками: схема

Одним из вариантов применения твердотельных световых источников в декоративных целях, является сборка так называемых «бегущих огней» на диодах, включающая в себя генератор прямоугольных импульсов, счетчик, дешифратор и устройства индикации.

Сборка всех элементов по предложенной схеме выполняется на макетной беспаечной плате, а устанавливаемые конденсаторы и резисторы по номиналу могут иметь некоторый разброс, но строго в пределах ±20%.

с тонким жалом, припой и канифоль;

  • острый канцелярский или строительный нож;
  • силиконовый прозрачный герметик.
  • Пошаговая технология самостоятельной сборки диодной гирлянды:

    • определиться с оптимальным расстоянием между диодами;
    • раскрутить и распрямить провод;
    • нанести маркером на провод отметки под расположение диодов;
    • на участках отметок острым ножом удалить изоляцию;
    • нанести на участки без изоляции канифоль и припой;
    • зафиксировать световые диоды, припаяв их ножки;
    • заизолировать участки крепления диодов и силиконового герметика.

    На заключительном этапе выполняется подсоединение блока питания на 8-12V и стандартного резистора.

    При самостоятельной сборке светящейся гирлянды необходимо помнить, что только последовательное соединение всех светодиодов в цепи по стандартной схеме, позволяет получить традиционный мерцающий эффект.

    Сфера применения мигающих светодиодов в настоящее время достаточно широка. При желании и некоторых знаниях в области электрики, на основе таких источников света вполне можно самостоятельно изготовить различные сигнальные схемы, оригинальные детские игрушки, портативные фонарики и даже светящиеся новогодние гирлянды.

    Снова всем привет! В этой статье буду рассказывать начинающим радиолюбителям о том, как сделать простую мигалку всего на одном самом дешевом транзисторе. Конечно в продаже можно найти готовые , но они есть не во всех городах, частота их вспышек не регулируется, и напряжение питания довольно ограниченно. Часто бвает проще не ходить по магазинам и не ждать неделями заказа с интернета (когда надо иметь мигалку здесь и сейчас), а собрать за пару минут по простейшей схеме. Для изготовления конструкции нам понадобятся:

    1 . Транзистор типа КТ315 (Не важно, будет ли он буквы б,в,г, - пойдет любой).

    2 . Электролитический конденсатор напряжением не менее 16вольт, и емкостью от 1000 мкф - 3000 мкф (Чем меньше емкость, тем быстрее мигание светодиода).

    3 . Резистор 1 кОм, мощность ствите как вам по душе.

    4 . Светодиод (Любой цвет, кроме белого).

    5 . Два провода (Желательно многожильные).

    Для начала сама схема LED мигалки. Теперь приступим к её изготовлению. Можно сделать как вариант на печатной плате, а можно и навесным монтажом, выглядит оно примерно так:


    Паяем транзистор, затем электролитический конденсатор, в моем случае это 2200 микрофарад. Не забываем, что у электролитов есть полярность.


    Открывать полный загадок мир радиоэлектроники, не имея специализированного образования, рекомендуется начинать со сборки простых электронных схем. Уровень удовлетворения при этом будет выше, если положительный результат будет сопровождаться приятным визуальным эффектом. Идеальным вариантом являются схемы с одним или двумя мигающими светодиодами в нагрузке. Ниже приведена информация, которая поможет в реализации наиболее простых схем, сделанных своими руками.

    Готовые мигающие светодиоды и схемы с их использованием

    Среди многообразия готовых мигающих светодиодов, наиболее распространены изделия в 5-ти мм корпусе. Помимо готовых одноцветных мигающих светодиодов, существуют двухвыводные экземпляры с двумя или тремя кристаллами разного цвета. У них в одном корпусе с кристаллами встроен генератор, который работает на определенной частоте. Он выдает одиночные чередующиеся импульсы на каждый кристалл по заданной программе. Скорость мерцания (частота) зависит от заданной программы. При одновременном свечении двух кристаллов мигающий светодиод выдает промежуточный цвет. Вторыми по популярности являются мигающие светоизлучающие диоды, управляемые током (уровнем потенциала). То есть, чтобы заставить мигать светодиод данного типа нужно менять питание на соответствующих выводах. Например, цвет излучения двуцветного красно-зелёного светодиода с двумя выводами зависит от направления протекания тока.

    Трёхцветный (RGB) мигающий светодиод с четырьмя выводами имеет общий анод (катод) и три вывода для управления каждым цветом отдельно. Эффект мигания достигается путём подключения к соответствующей системе управления.

    Смастерить мигалку на основе готового мигающего светодиода достаточно легко. Для этого потребуется батарейка CR2032 или CR2025 и резистор на 150–240 Ом, который следует припаять на любой вывод. Соблюдая полярность светодиода, контакты подключаются к батарейке. Светодиодная мигалка готова, можно наслаждаться визуальным эффектом. Если использовать батарейку типа «крона», основываясь на законе Ома, следует подобрать резистор большего сопротивления.

    Обычные светодиоды и семы мигалок на их основе

    Начинающий радиолюбитель может собрать мигалку и на простом одноцветном светоизлучающем диоде, имея минимальный набор радиоэлементов. Для этого рассмотрим несколько практических схем, отличающихся минимальным набором используемых радиодеталей, простотой, долговечностью и надежностью.

    Первая схема состоит из маломощного транзистора Q1 (КТ315, КТ3102 или аналогичный импортный аналог), полярного конденсатора C1 на 16В с емкостью 470 мкФ, резистора R1 на 820-1000 Ом и светодиода L1 наподобие АЛ307. Питается вся схема от источника напряжения 12В.

    Приведенная схема работает по принципу лавинного пробоя, поэтому база транзистора остаётся «висеть в воздухе», а на эмиттер подаётся положительный потенциал. При включении происходит заряд конденсатора, примерно до 10В, после чего транзистор на мгновение открывается с отдачей накопленной энергии в нагрузку, что проявляется в виде мигания светодиода. Недостаток схемы заключается в необходимости наличия источника напряжения 12В.

    Вторая схема собрана по принципу транзисторного мультивибратора и считается более надёжной. Для её реализации потребуется:

    • два транзистора КТ3102 (или их аналога);
    • два полярных конденсатора на 16В емкостью 10 мкФ;
    • два резистора (R1 и R4) по 300 Ом для ограничения тока нагрузки;
    • два резистора (R2 и R3) по 27 кОм для задания тока базы транзистора;
    • два светодиода любого цвета.

    В данном случае на элементы подаётся постоянное напряжение 5В. Схема работает по принципу поочередного заряда-разряда конденсаторов С1 и С2, что приводит к открыванию соответствующего транзистора. Пока VT1 сбрасывает накопленную энергию С1 через открытый переход коллектор-эмиттер, светится первый светодиод. В это время происходит плавный заряд С2, что способствует уменьшению тока базы VT1. В определённый момент VT1 закрывается, а VT2 открывается и светится второй светодиод.

    Вторая схема имеет сразу несколько преимуществ:

    1. Она может работать в широком диапазоне напряжений начиная от 3В. Подавая на вход более 5В, придётся пересчитать номиналы резисторов, чтобы не пробить светодиод и не превысить максимальный ток базы транзистора.
    2. В нагрузку можно включать 2–3 светодиода параллельно или последовательно, пересчитав номиналы резисторов.
    3. Равное увеличение ёмкости конденсаторов ведёт к увеличению длительности свечения.
    4. Изменив ёмкость одного конденсатора, получим несимметричный мультивибратор, в котором время свечения будет различным.

    В обоих вариантах можно применить транзисторы pnp проводимости, но с коррекцией схемы подключения.

    Иногда вместо мигающих светодиодов радиолюбитель наблюдает обычное свечение, то есть оба транзистора частично приоткрыты. В таком случае нужно либо заменить транзисторы, либо запаять резисторы R2 и R3 с меньшим номиналом, увеличив, тем самым, ток базы.

    Следует помнить, что питания от 3В будет недостаточно, чтобы зажечь светодиод с высоким значением прямого напряжения. Например, для светодиода белого, синего или зелёного цвета потребуется большее напряжение.

    Кроме рассмотренных принципиальных схем, существует великое множество других несложных решений, которые вызывают мигание светодиода. Начинающим радиолюбителям стоит обратить внимание на недорогую и широко распространенную микросхему NE555, на которой также можно реализовать данный эффект. Её многофункциональность поможет собирать и другие интересные схемы.

    Область применения

    Мигающие светодиоды со встроенным генератором нашли применение в построении новогодних гирлянд. Собирая их в последовательную цепь и устанавливая резисторы с небольшим отличием по номиналу, добиваются сдвига в мигании каждого отдельного элемента цепи. В итоге получается прекрасный световой эффект, не требующий сложного блока управления. Достаточно только подключить гирлянду через диодный мост.

    Мигающие светоизлучающие диоды, управляемые током, применяются в качестве индикаторов в электронной технике, когда каждому цвету соответствует определённое состояние (вкл./выкл. уровень заряда и пр.). Также из них собирают электронные табло, рекламные вывески, детские игрушки и прочие товары, в которых разноцветное мигание вызывает интерес у людей.

    Умение собирать простые мигалки станет стимулом к построению схем на более мощных транзисторах. Если приложить немного усилий, то с помощью мигающих светодиодов можно создать множество интересных эффектов, например – бегущую волну.

    Читайте так же