Реферат: Базовые схемы режимов самовозбуждения. Режимы самовозбуждения автогенераторов Мягкий и жесткий режим самовозбуждения

Режим самовозбуждения, при котором после включения источника питания колебания плавно нарастают, называется мягким самовозбуждением, если же для возбуждения колебаний требуется какое-либо дополнительное воздействие, то такой режим называется жестким.

Рис. 13.2. Изменение крутизны при мягком режиме самовозбуждения

Реализации мягкого режима самовозбуждения можно достичь путем соответствующего выбора напряжения смещения на участке вольтамперной характеристики транзистора с большой крутизной.

Этому режиму соответствует зависимость S=f(U mб) следующей формы, показанной на рис. 13.2.

На этом же рис. проведена прямая
. Для точки пересечения графиков выполняется уравнение баланса амплитуд и установившаяся амплитуда колебания равна
. При мягком режиме стационарный режим оказывается устойчивым, режим покоя – неустойчивым. Поэтому происходит самовозбуждение автогенератора.

Для жесткого режима характерным является то, что малые колебания на входе транзистора не могут вызвать самовозбуждения автогенератора; самовозбуждение возможно только при большой начальной амплитуде напряжения. Такой режим реализуется путем подачи на УЭ запирающего напряжения смещения, при котором малые амплитуды входного напряжения не могут вызвать тока в выходной цепи УЭ.

Для этого режима характерна следующая зависимость S=f(U mб), показанная на рис. 13.3.

Рис. 13.3. Изменение крутизны при жестком режиме самовозбуждения

Режим, соответствующий амплитуде колебаний
, устойчив, а режим, соответствующий амплитуде
, неустойчив.

13.3. Эквивалентные трехточечные схемы автогенератора

Простейшими по конфигурации автогенераторами являются автогенераторы, работающие по трехточечной схеме. В таких автогенераторах транзистор тремя своими выводами присоединяют к трем точкам колебательного контура, состоящего из трех реактивных элементов.

Обобщенная трехточечная схема автогенератора изображена на рис. 13.4.

Рис. 13.4. Обобщенная эквивалентная схема автогенератора

Для возникновения автоколебаний необходимо, чтобы:

В зависимости от того, какие реактивные элементы количественно преобладают в контуре, различают автогенераторы, построенные по схеме индуктивной (рис. 13.5) и емкостной (рис. 13.6) трехточки.

    Индуктивная трехточка:

Рис. 13.5. Индуктивная трехточка

,
,
.

    Емкостная трехточка:

Рис. 13.6. Емкостная трехточка

- частота генерируемых колебаний.

,
,
.

Коэффициент обратной связи через элементы трехточечной схемы:

.

Для индуктивной трехточки:
.

Для емкостной трехточки:
.

    Схема Клаппа

В модифицированной схеме емкостной трехточки достигается более высокая стабильность частоты (рис. 13.7).

Рис. 13.7. Схема Клаппа

Введение конденсатора С 3 уменьшает коэффициент включения транзистора в контур, снижая дестабилизирующее влияние его параметров на частоту автогенератора.

, где
.

Во всех схемах контур включен частично в коллекторную цепь транзистора.

Коэффициент включения контура в цепь коллектора:

Эквивалентное сопротивление цепи коллектора:
.

В зависимости от значений постоянных питающих напряжений, подведенных к электродам усилительного элемента, и от коэффициента К ос возможны два режима самовозбуждения: мягкий и жесткий.

1.Режим мягкого самовозбуждения.

В данном режиме рабочую точку А выбирают на линейном участке вольт-амперной характеристики усилительного элемента, что обеспечивает начальный режим работы усилительного элемента без отсечки выходного тока i вых (рис. №2).

Рис. № 2. Диаграмма, мягкого режима самовозбуждения.

В этих условиях самовозбуждение возникает от самых незначительных изменений входного напряжения U вх, всегда имеющихся в реальных условиях из-за флуктуаций носителей заряда.

Сначала колебания в автогенераторе нарастают относительно быстро. Затем из-за нелинейности вольт-амперной характеристики усилительного элемента рост амплитуды колебаний замедляется, поскольку напряжение на его входе попадает на участки вольт-амперной характеристики со все меньшей статической крутизной, а это приводит к уменьшению средней крутизны S ср и коэффициента передачи К ос цепи обратной связи.

Нарастание колебаний происходит до тех пор, пока коэффициент передачи К уменьшится до единице. В результате в автогенераторе установиться стационарный режим, которому соответствует определенная амплитуда выходных колебаний, причем угол отсечки выходного тока 0>90 0 . Частота этих колебаний очень близка к резонансной частоте колебательной системы.

Если бы усилительный элемент имел линейную вольт-амперную характеристику, нарастание амплитуды автоколебаний происходило бы до бесконечности, что физически невозможно. Поэтому в линейной цепи получить устойчивые автоколебания с постоянной амплитудой невозможно.

Из-за нелинейности воль-амперной характеристики форма выходного тока i вых усилительного элемента получается несинусоидальной. Однако при достаточно большой добротности (50…200) колебательной системы первая гармоника этого тока и, следовательно, напряжение на выходе автогенератора представляют собой почти гармонические колебания.

2. Режим жесткого самовозбуждения.

При этом режиме напряжение смещения U 0 задают таким, чтобы при малых амплитудах входного напряжения ток через усилительный элемент не проходил. Тогда незначительный колебания, возникшие в контуре, не могут вызвать ток выходной цепи, и самовозбуждение автогенератора не наступает. Колебания возникают только при их достаточно большой начальной амплитуде, что не всегда можно обеспечить. Процесс возникновения и нарастания колебаний при жестком режиме самовозбуждения иллюстрирует с помощью рис.№3.

Рис.№ 3. Диаграмма жесткого самовозбуждения

Из рассмотрения этого рисунка видно, что при малых начальных амплитудах входного напряжения (кривая1) ток i вых =0 и автоколебания не возникают. Они возникают только при достаточно большой начальной амплитуде напряжения (кривая 2) и быстро нарастают до установившегося значения. В стационарном режиме усилительный элемент работает у углами отсечки выходного тока 0<90 0 .

Для удобства эксплуатации автогенератора целесообразнее применить мягкий режим самовозбуждения, так как в этом режиме колебания возникают сразу после включения источника питания. Однако при жестком режиме колебаний с углом отсечки 0<90 0 обеспечиваются более высокий КПД автогенератора и меньшие тепловые потери. Поэтому в стационарном режиме автогенератора более выгоден именно режим с малыми углами отсечки выходного тока усилительного тока усилительного элемента.

Автоматическое смещение. Его применение обеспечивает возможность работы автогенератора при первоначальном включении в режиме мягкого самовозбуждения с последующими автоматическим переходом в режим жесткого самовозбуждения. Этого достигают применением в автогенераторе специальной цепи автоматического смещения.

На рис.№ 4а изображена упрощенная принципиальная схема автогенератора на биполярном транзисторе VT, нагрузкой которого служит колебательный контур L2C2. Напряжение положительной обратной связи создается на катушке L1 и подводится между базой и эмиттером транзистора. Начальное напряжение6 смещения на базе транзистора создается источником включена цепь авто-смещения R1C1.

Процесс возникновения и нарастания колебаний иллюстрируется с помощью рис.№ 4б. В первый момент после включения генератора, т.е. в момент появления колебаний, рабочая точка А находится на участке максимальной крутизны вольт-амперной характеристики транзистора. Благодаря этому колебания возникают легко в условиях мягкого режима самовозбуждения. По мере возрастания амплитуды увеличивается ток базы, постоянная составляющая которого создает падение напряжения U см на резисторе R1 (переменная составляющая этого тока проходит через конденсатор C1). Так как напряжение U см приложено между базой и эмиттером в отрицательной полярности, результирующее постоянное напряжение на базе U 0 - U см уменьшается, что вызывает смещение рабочей точки вниз по характеристике транзистора и переводит автогенератор в режим работы с малыми углами отсечки коллекторного тока при этом токи коллектора i к и базы i б имеют вид последовательности импульсов, а напряжение на выходе U вых, создаваемое первой гармоникой коллекторного тока, представляет собой синусоидальное колебание с неизменной амплитудой.

Таким образом, цепь автоматического смещения R1C1в автогенераторе выполняет роль регулятора процесса самовозбуждения и обеспечивает в первоначальный момент условия мягкого самовозбуждения с последующим переходом в более выгодный режим с малыми углами отсечки.

В зависимости от значений постоянных питающих напряжений, подведенных к электродам усилительного элемента, и от коэффициента К ос возможны два режима самовозбуждения: мягкий и жесткий.

1.Режим мягкого самовозбуждения.

В данном режиме рабочую точку А выбирают на линейном участке вольт-амперной характеристики усилительного элемента, что обеспечивает начальный режим работы усилительного элемента без отсечки выходного тока i вых (рис. №2).

Рис. № 2. Диаграмма, мягкого режима самовозбуждения.

В этих условиях самовозбуждение возникает от самых незначительных изменений входного напряжения U вх, всегда имеющихся в реальных условиях из-за флуктуаций носителей заряда.

Сначала колебания в автогенераторе нарастают относительно быстро. Затем из-за нелинейности вольт-амперной характеристики усилительного элемента рост амплитуды колебаний замедляется, поскольку напряжение на его входе попадает на участки вольт-амперной характеристики со все меньшей статической крутизной, а это приводит к уменьшению средней крутизны S ср и коэффициента передачи К ос цепи обратной связи.

Нарастание колебаний происходит до тех пор, пока коэффициент передачи К уменьшится до единице. В результате в автогенераторе установиться стационарный режим, которому соответствует определенная амплитуда выходных колебаний, причем угол отсечки выходного тока 0>90 0 . Частота этих колебаний очень близка к резонансной частоте колебательной системы.

Если бы усилительный элемент имел линейную вольт-амперную характеристику, нарастание амплитуды автоколебаний происходило бы до бесконечности, что физически невозможно. Поэтому в линейной цепи получить устойчивые автоколебания с постоянной амплитудой невозможно.

Из-за нелинейности воль-амперной характеристики форма выходного тока i вых усилительного элемента получается несинусоидальной. Однако при достаточно большой добротности (50…200) колебательной системы первая гармоника этого тока и, следовательно, напряжение на выходе автогенератора представляют собой почти гармонические колебания.

2. Режим жесткого самовозбуждения.

При этом режиме напряжение смещения U 0 задают таким, чтобы при малых амплитудах входного напряжения ток через усилительный элемент не проходил. Тогда незначительный колебания, возникшие в контуре, не могут вызвать ток выходной цепи, и самовозбуждение автогенератора не наступает. Колебания возникают только при их достаточно большой начальной амплитуде, что не всегда можно обеспечить. Процесс возникновения и нарастания колебаний при жестком режиме самовозбуждения иллюстрирует с помощью рис.№3.

Рис.№ 3. Диаграмма жесткого самовозбуждения

Из рассмотрения этого рисунка видно, что при малых начальных амплитудах входного напряжения (кривая1) ток i вых =0 и автоколебания не возникают. Они возникают только при достаточно большой начальной амплитуде напряжения (кривая 2) и быстро нарастают до установившегося значения. В стационарном режиме усилительный элемент работает у углами отсечки выходного тока 0<90 0 .

Для удобства эксплуатации автогенератора целесообразнее применить мягкий режим самовозбуждения, так как в этом режиме колебания возникают сразу после включения источника питания. Однако при жестком режиме колебаний с углом отсечки 0<90 0 обеспечиваются более высокий КПД автогенератора и меньшие тепловые потери. Поэтому в стационарном режиме автогенератора более выгоден именно режим с малыми углами отсечки выходного тока усилительного тока усилительного элемента.

Автоматическое смещение. Его применение обеспечивает возможность работы автогенератора при первоначальном включении в режиме мягкого самовозбуждения с последующими автоматическим переходом в режим жесткого самовозбуждения. Этого достигают применением в автогенераторе специальной цепи автоматического смещения.

На рис.№ 4а изображена упрощенная принципиальная схема автогенератора на биполярном транзисторе VT, нагрузкой которого служит колебательный контур L2C2. Напряжение положительной обратной связи создается на катушке L1 и подводится между базой и эмиттером транзистора. Начальное напряжение6 смещения на базе транзистора создается источником включена цепь авто-смещения R1C1.

Процесс возникновения и нарастания колебаний иллюстрируется с помощью рис.№ 4б. В первый момент после включения генератора, т.е. в момент появления колебаний, рабочая точка А находится на участке максимальной крутизны вольт-амперной характеристики транзистора. Благодаря этому колебания возникают легко в условиях мягкого режима самовозбуждения. По мере возрастания амплитуды увеличивается ток базы, постоянная составляющая которого создает падение напряжения U см на резисторе R1 (переменная составляющая этого тока проходит через конденсатор C1). Так как напряжение U см приложено между базой и эмиттером в отрицательной полярности, результирующее постоянное напряжение на базе U 0 - U см уменьшается, что вызывает смещение рабочей точки вниз по характеристике транзистора и переводит автогенератор в режим работы с малыми углами отсечки коллекторного тока при этом токи коллектора i к и базы i б имеют вид последовательности импульсов, а напряжение на выходе U вых, создаваемое первой гармоникой коллекторного тока, представляет собой синусоидальное колебание с неизменной амплитудой.

Таким образом, цепь автоматического смещения R1C1в автогенераторе выполняет роль регулятора процесса самовозбуждения и обеспечивает в первоначальный момент условия мягкого самовозбуждения с последующим переходом в более выгодный режим с малыми углами отсечки.

В зависимости от значений постоянных питающих напряжений, подведенных к электродам усилительно­го элемента, и от коэффициента К 0 . с возможны два режима самовозбужде­ния: мягкий и жесткий.

В режиме мягкого самовозбуждения рабо­чую точку А выбирают на линейном участке ВАХ усилительного элемента (рисунок 9.1,а), что обеспечивает начальный режим работы усилительного элемента без отсечки выходного тока. В этих условиях самовозбуждение возникает от самых незначительных изменений входного напряжения, всегда имею­щихся в реальных условиях из-за флук­туации носителей заряда.

Сначала колебания в автогенераторе нарастают относительно быстро. Затем из-за нелинейности ВАХ усилительного элемента рост амплитуды колебаний замедляется, поскольку напряжение на его входе попадает на участки ВАХ со все меньшей статической крутизной, а это приводит к уменьшению средней крутизны S ср и коэффициента передачи К 0с цепи обрат ной связи.

Рисунок 9.1 – Диаграммы, поясняющие режимы самовозбуждения.

Нарастание колебаний происходит до тех пор, пока коэффициент передачи уменьшится до единицы. В результате в автогенераторе установится стацио­нарный режим, которому соответствует определенная амплитуда выходных ко­лебаний, причем угол отсечки выходно­го тока 0> 90°. Частота этих колебаний очень близка к резонансной частоте колебательной системы. Обратим внимание: если бы усили­тельный элемент имел линейную вольт-амперную характеристику, нарастание амплитуды автоколебаний происходило бы до бесконечности, что физически невозможно. Поэтому в линейной цепи получить устойчивые автоколебания с постоянной амплитудой невозможно.

Из-за нелинейности вольт-амперной характеристики форма выходного тока усилительного элемента получается несинусоидальной. Однако при доста­точно большой добротности (Q=50…200) колебательной системы первая гармо­ника этого тока и, следовательно, на­пряжение на выходе автогенератора представляют собой почти гармоничес­кие колебания.

9.5 Режим жесткого самовоз­буждения

При этом режиме напря­жение смещения задают таким, чтобы при малых амплитудах входного напряжения ток через усилительный элемент не проходил. Тогда незначи­тельные колебания, возникшие в конту­ре, не могут вызвать ток в выходной цепи, и самовозбуждение автогенератора не наступает. Колебания возни­кают только при их достаточно большой начальной амплитуде, что не всегда можно обеспечить. Процесс возникно­вения и нарастания колебаний при жестком режиме самовозбуждения иллюстрируется на рисунке 9.1, б. Видно, что при малых начальных амплитудах входного напряжения (кривая 1) ток i вых = 0 и автоколебания не возникают. Они возникают только при достаточно большой начальной амплитуде напря­жения (кривая 2) и быстро нарастают до установившегося значения. В ста­ционарном режиме усилительный эле­мент работает с углами отсечки выход­ного тока <90°.

Для удобства эксплуатации автогене­ратора целесообразнее применять мяг­кий режим самовозбуждения, так как в этом режиме колебания возникают сразу после включения источника пи­тания. Однако при жестком режиме колебаний с углом отсечки <90° обеспечиваются более высокий КПД автогенератора и меньшие тепловые потери. Поэтому в стационарном режи­ме автогенератора более выгоден имен­но режим с малыми углами отсеч­ки выходного тока усилительного эле­мента.

УСТОЙЧИВОСТЬ РАБОТЫ АГ

Процесс возник­новения и установления колебаний в автогенераторе удобно исследовать с помощью колебательных характери­стик и линий обратной связи.

10.1 Колебательные характе­ристики

Они представляют со­бой зависимости амплитуды первой гармоники выходного тока усилитель­ного элемента I m 1 от амплитуды входно­го напряжения U m вх при неизменном на­пряжении смещения U 0 и разомкнутой цепи обратной связи: . Эти зависимости имеют нелинейный характер и могут быть получены экспе­риментально путем перевода генератора в режим с внешним возбуждением.

Рисунок 10.1 – Колебательные характеристики АГ.

На рисунке 10.1 показаны три колеба­тельные характеристики, соответствую­щие разным напряжениям смещения. Характеристика 1 соответствует смеще­нию, при котором крутизна вольт-ам­перной характеристики имеет наиболь­шее значение. По мере увеличения на­пряжения U m вх средняя крутизна па­дает, и наклон характеристики умень­шается.

Характеристика 2 соответствует мень­шему напряжению смещения, при кото­ром статическая крутизна ВАХ усилительного эле­мента в рабочей точке меньше макси­мальной крутизны. Вследствие этого с увеличением напряжения средняя крутизна S ср растет и лишь при очень больших значениях U m вх начинает уменьшаться.

Третья характеристика соответствует случаю, когда при отсутствии входного сигнала ток через усилительный эле­мент не проходит. Этот ток, а следова­тельно, ток в колебательном контуре, появляется лишь при некоторой ампли­туде напряжения U m вх , достаточной для отпирания лампы или транзистора в течение части периода высокочастот­ного колебания.

Линии обратной связи

Эти линии определяют зависимость амплитуды U m вх , т. е. выходного на­пряжения цепи обратной связи, от ам­плитуды тока I m 1 , являющегося вход­ным током этой цепи: .

Поскольку и получаем

.

Отсюда следует, что линии обратной связи графически изображаются в виде прямых, выходящих из начала коорди­нат (рисунок 10.2). Наклон этих прямых различен и зависит от значения коэф­фициента К ос . Чем сильнее обратная связь в автогенераторе, тем меньший угол наклона имеет линия обратной свя­зи относительно оси U m вх (на рисунке 10.2 ).

Рисунок 10.2 – Линии обратной связи.

10.3 Определение стационар­ной амплитуды колебаний

В стационарном режиме АГ амплитуда входного напряже­ния U m вх и соответствующая данному режиму амплитуда первой гармоники выходного тока I m 1 усилительного эле­мента должны одновременно удовлетво­рять обоим указанным зависимостям. Это возможно только в точках пересече­ния колебательной характеристики и линии обратной связи. На рис. 10.3 ось абсцисс колебательной характе­ристики U m вх служит одновременно осью ординат линий обратной связи 2-5, причем масштаб на них одинаковый. По общей оси ординат характеристики 1 и линий 2-5 откладывается ток I m 1 .

Линия обратной связи 2, соответст­вующая коэффициенту передачи цепи обратной связи , имеет с ко­лебательной характеристикой 1 общую точку только в начале координат. В этом случае самовозбуждения автоге­нератора не происходит из-за малого коэффициента К ос или малого значения резонансного сопротивления контура R рез .

Рисунок 10.3 – Определение стационарного состояния АГ в режиме мягкого самовозбуждения.

При критическом коэффициенте прямая обратной связи 3 сливается с колебательной характери­стикой в области ОА, в которой она линейна, но не пересекает эту характе­ристику.В данном случае самовозбуждение также отсутствует, что подтверждает вывод: в автогенераторе, работающем в линейном режиме и имеющем , получить автоколебания не­возможно.

Колебания в АГ возникают лишь при коэффициенте , которо­му соответствует линия обратной связи 4. Эта линия в условиях мягкого режи­ма самовозбуждения имеет с колеба­тельной характеристикой две общие точки, 0 и В. Точка В соответст­вует стационарному состоянию автогенератора, характеризующемуся ампли­тудами тока I m 1 B и напряжения U m вхВ . В это состояние генератор приходит в процессе самовозбуждения, но может выйти из него под действием различных дестабилизирующих факторов.

Рас­смотрим процессы, которые будут при этом протекать.

Предположим, что напряжение на входе усилительного элемента умень­шилось до значения U m вхС . Это напря­жение вызовет в выходной цепи генера­тора ток I m 1 C (точка С на рисунке 10.3), который, благодаря обратной связи, увеличит напряжение на входе до U m вхА , что приведет, согласно харак­теристике 1, к увеличению тока до I m 1 A и т. д. В результате генератор вернется в состояние, определяемое точ­кой В пересечения характеристик 1 и 4. Аналогично можно показать, что если под действием каких-либо причин на­пряжение на входе усилительного элемента увеличится и станет больше, чем U m вхВ (точка D на рисунке 10.3), генера­тор вновь автоматически перейдет в состояние, определяемое точкой В. Приведенные рассуждения подтверж­дают, что точка В является точкой устойчивого равновесия и соответствует стационарному режиму работы автоге­нератора. Амплитуды напряжения и то­ка в стационарном режиме определяют­ся величиной обратной связи. При уве­личении обратной связи (рисунок 3, пря­мая 5) соответствующие стационарные амплитуды увеличиваются до значений U m вхЕ и I m 1 E .

Вторая общая точка колебательной характеристики 1 и линии обратной свя­зи 4 (рисунок 10.3, точка 0) является неустойчивой, так как в ней возникшие колебания вне зависимости от началь­ной амплитуды нарастают до колебаний со стационарными амплитудами, опре­деляемыми положением точки В.

Рисунок 10.4 – Определение стационарного состояния АГ в режиме жесткого самовозбуждения.

В условиях жесткого режима само­возбуждения (рисунок 10.4) колебательная характеристика 1 и линия обратной связи имеют три общих точки: О, А, В. Точка 0 характеризует устойчивое состояние покоя автогенератора, т. е. отсутствие самовозбуждения при малых начальных амплитудах колебаний. Ко­лебания возникают только когда первоначальная амплитуда входного напряжения становится больше U m вхА , определяемого точкой А на рис. 10.4, например, напряжение увеличилось до значения U m вхС . Вызванный этим напряжением ток I m 1 C увеличит c помощью обратной связи напряжение на входе генератора, что приведет к большему возрастанию тока и т. д.

(см. рисунок 10.4, линии со стрелками). В результате достигается устойчивый колебательный режим (точка В), характеризуемый амплитудами U m вхВ и I m 1 B .

Предположим теперь, что напряжение на входе генератора стало меньше, чем U m вхА и достигло значения U m вхВ , определяемого точкой D. Тогда ток уменьшится до I m 1 D , что вызовет дальнейшее уменьшение входного напряжения, как это показано линиями со стрелками на рис. 4. В результате колебания затухают. Следовательно, точка А пересечения колебательной характеристики и линии обратной связи характеризует неустойчивое состояние режима автогенератора.

Мягкий режим.

Если рабочая точка находится на участке характеристики iK(uБЭ) с наибольшей крутизной, то режим самовозбуждения называется мягким.

Проследим за изменениями амплитуды тока первой гармоники в зависимости от величины коэффициента обратной связи КОС. Изменение КОС приводит к изменению угла наклона a прямой обратной связи (рис.2)

Рисунок 2. Мягкий режим самовозбуждения

При КОС = КОС1 состояние покоя устойчиво и генератор не возбуждается, амплитуда колебаний равна нулю (рис. 2 б). Величина КОС = КОС2 = ККР является граничной (критической) между устойчивостью и неустойчивостью состояния покоя. При КОС = КОС3 > ККР состояние покоя неустойчиво, генератор возбудится, и величина Im1 установится соответствующей точке А. При увеличении КОС величина первой гармоники выходного тока будет плавно расти и при КОС = КОС4 установится в точке Б. При уменьшении КОС амплитуда колебаний будет уменьшаться по той же кривой и колебания сорвутся при коэффициенте обратной связи КОС = КОС2 < ККР.

В качестве выводов можно отметить следующие особенности мягкого режима самовозбуждения:

Ø для возбуждения не требуется большой величины коэффициента обратной связи КОС;

Ø возбуждение и срыв колебаний происходят при одном и том же значении коэффициента обратной связи ККР;

Ø возможна плавная регулировка амплитуды стационарных колебаний путем изменения величины коэффициента обратной связи КОС;

Ø как недостаток следует отметить большое значение постоянной составляющей коллекторного тока, что приводит к малому значению КПД.

Жесткий режим.

Если рабочая точка находится на участке характеристики iK = f (uБЭ) с малой крутизной S < SMAX, то режим самовозбуждения называется жестким.

Рисунок 3. Жесткий режим самовозбуждения

Возбуждение автогенератора произойдет, когда коэффициент обратной связи превысит величину КОС3 = КОСКР. Дальнейшее увеличение КОС приводит к небольшому увеличению амплитуды первой гармоники выходного (коллекторного) тока Im1 по пути В-Г-Д. Уменьшение КОС до КОС1 не приводит к срыву колебаний, так как точки В и Б устойчивы, а точка А устойчива справа. Колебания срываются в точке А, т. е. при КОС < КОС1, так как точка А неустойчива слева.

Таким образом, можно отметить следующие особенности работы генератора при жестком режиме самовозбуждения:

Ø для самовозбуждения требуется большая величина коэффициента обратной связи КОС;

Ø возбуждение и срыв колебаний происходят ступенчато при разных значениях коэффициента обратной связи КОС;

Ø амплитуда стационарных колебаний в больших пределах изменяться не может;

Ø постоянная составляющая коллекторного тока меньше, чем в мягком режиме, следовательно, значительно выше КПД.

Сравнивая положительные и отрицательные стороны рассмотренных режимов самовозбуждения, приходим к общему выводу: надежное самовозбуждение генератора обеспечивает мягкий режим, а экономичную работу, высокий КПД и более стабильную амплитуду колебаний – жесткий режим.

Стремление объединить эти преимущества привело к идее использования автоматического смещения, когда генератор возбуждается при мягком режиме самовозбуждения, а его работа происходит в жестком режиме. Сущность автоматического смещения рассмотрена ниже.

Автоматическое смещение.

Сущность режима заключается в том, что для обеспечения возбуждения автогенератора в мягком режиме исходное положение рабочей точки выбирается на линейном участке проходной характеристики с максимальной крутизной. Эквивалентное сопротивление контура выбирается таким, чтобы выполнялись условия самовозбуждения. В процессе нарастания амплитуды колебаний режим по постоянному току автоматически изменяется и в стационарном состоянии устанавливается режим работы с отсечкой выходного тока (тока коллектора), т. е. автогенератор работает в жестком режиме самовозбуждения на участке проходной характеристики с малой крутизной (рис. 4).

Рисунок 4. Принцип автоматического смещения автогенератора

Напряжение автоматического смещения получают обычно за счет тока базы путем включения в цепь базы цепочки R Б C Б (рис. 5).

Рисунок 5. Схема автоматического смещения за счет тока базы

Начальное напряжение смещения обеспечивается источником напряжения Е Б. При возрастании амплитуды колебаний увеличивается напряжение на резисторе R Б, создаваемое постоянной составляющей базового тока I Б0 . Результирующее напряжение смещения (Е Б - I Б0 R Б) при этом уменьшается, стремясь к Е Б С Т.

В практических схемах начальное напряжение смещения обеспечивается с помощью базового делителя R Б1 , R Б2 (рис. 6).

Рисунок 6. Автоматическое смещение с помощью базового делителя

В этой схеме начальное напряжение смещения

Е Б.НАЧ. =Е К -(I Д +I Б0)R Б2 ,

где I Д =Е К /(R Б1 +R Б2) – ток делителя.

При возрастании амплитуды колебаний постоянная составляющая тока базы IБ 0 увеличивается и смещение ЕБ уменьшается по величине, достигая значения ЕБСТ в установившемся режиме. Конденсатор СБ предотвращает короткое замыкание резистора RБ1 по постоянному току.

Следует отметить, что введение в схему генератора цепи автоматического смещения может привести к явлению прерывистой генерации. Причиной ее возникновения является запаздывание напряжения автоматического смещения относительно нарастания амплитуды колебаний. При большой постоянной времени t = RБСБ (рис. 8.41) колебания быстро нарастают, а смещение остается практически неизменным – ЕБ.НАЧ. Далее смещение начинает изменяться и может оказаться меньше той критической величины, при которой еще выполняются условия стационарности, и колебания сорвутся. После срыва колебаний емкость СБ будет медленно разряжаться через RБ и смещение вновь будет стремиться к ЕБ.НАЧ. Как только крутизна станет достаточно большой, генератор снова возбудится. Далее процессы будут повторяться. Таким образом, колебания периодически будут возникать и снова срываться.

Прерывистые колебания, как правило, относятся к нежелательным явлениям. Поэтому очень важно расчет элементов цепи автоматического смещения проводить так, чтобы исключить возможность возникновения прерывистой генерации.

Для исключения прерывистой генерации в схеме (рис. 4) величину CБ выбирают из равенства

Автогенератор с трансформаторной обратной связью

Рассмотрим упрощенную схему транзисторного автогенератора гармонических колебаний с трансформаторной обратной связью (рис. 7).

Рисунок 7. Автогенератор с трансформаторной обратной связью

Назначение элементов схемы:

Ø транзистор VT p-n-p типа, выполняет роль усилительного нелинейного элемента;

Ø колебательный контур LKCKGЭ задает частоту колебаний генератора и обеспечивает их гармоническую форму, вещественная проводимость GЭ характеризует потери энергии в самом контуре и во внешней нагрузке, связанной с контуром;

Ø катушка LБ обеспечивает положительную обратную связь между коллекторной (выходной) и базовой (входной) цепями, она индуктивно связана с катушкой контура LК (коэффициент взаимоиндукции М);

Ø источники питания ЕБ и ЕК обеспечивают необходимые постоянные напряжения на переходах транзистора для обеспечения активного режима его работы;

Ø конденсатор СР разделяет генератор и его нагрузку по постоянному току;

Ø блокировочные конденсаторы СБ1 и СБ2 шунтируют источники питания по переменному току, исключая бесполезные потери энергии на их внутренних сопротивлениях.