Основы унифицированного языка моделирования. UML: от теории к практике Представление проектных решений в виде uml диаграмм

Показать поведение одного объекта в течение его жизни, начиная от создания объекта и заканчивая его уничтожением. Каждая диаграмма состояний представляет некоторый автомат.

План действий

В разделе «Описание» изучите основной набор символов диаграммы состояний, необходимый для того, чтобы уметь читать диаграммы.

После ознакомления с другими разделами («Пример», «Применение») вы можете попробовать свои силы в самостоятельном составлении диаграмм состояний.

Замечания (описание)

Здесь представлен основной набор символов диаграммы состояний , необходимый для того, чтобы суметь прочитать диаграмму. После ознакомления с другими разделами («Пример», «Применение») вы сможете составлять диаграммы состояний самостоятельно!

Термин Изображение Описание
Начальное псевдосостояние (initial pseudostate) Начальное состояние системы
Переход Переход (transition) означает перемещение из одного состояния в другое.
Состояние Обозначает выполняемые системой действия (могут включать возможные варианты), приводящие к наблюдаемым актёрами результатам.
Состояние
активности (activity state)
Сложный шаг в прецеденте можно представить другим прецедентом.
В терминах языка UML мы говорим, что первый прецедент включает (includes) второй.
Конечное состояние Позволяет обозначить границы систем или подсистем.
Внутренние активности (internal activities) Случай когда состояния могут реагировать на события без совершения перехода, и в этом случае событие, защита и активность размещаются внутри прямоугольника состояния.
Входная активность Входная активность выполняется всякий раз, когда вы входите в состояние
Выходная активность Выходная активность – выполняется всякий раз, когда вы покидаете состояние.
Суперсостояние
Часто бывает, что несколько состояний имеют общие переходы и внутренние активности. В таких случаях можно их превратить в подсостояния (substates), а общее поведение перенести в суперсостояние (superstate).
Параллельные состояния
Состояния могут быть разбиты на несколько параллельных состояний, запускаемых одновременно.

Как применять технику креативности

Диаграммы состояний UML хороши для описания поведения одного объекта в нескольких прецедентах. Но они не очень подходят для описания поведения, характеризующегося взаимодействием множества объектов. Поэтому имеет смысл совместно с диаграммами состояний применять другие технологии. Например, диаграммы взаимодействия (глава 4) прекрасно описывают поведение нескольких объектов в одном прецеденте, а диаграммы деятельности UML хороши для показа основной последовательности действий нескольких объектов в нескольких прецедентах.

Не все считают диаграммы состояний естественными. Понаблюдайте, как специалисты работают с ними. Вполне возможно, что члены вашей команды не думают, что диаграммы состояний подходят для их стиля работы. Это не самая большая трудность; вы должны не забывать совместно использовать различные приемы работы.

Если вы применяете диаграммы состояний, то не старайтесь нарисовать их для каждого класса системы. Такой подход часто применяется в целях формально строгой полноты, но почти всегда это напрасная трата сил. Применяйте диаграммы состояний только для тех классов, которые проявляют интересное поведение, когда построение диаграммы состояний помогает понять, как все происходит.

Многие специалисты считают, что редактор UI и управляющие объекты имеют функциональные средства, полезные при отображении с помощью диаграммы состояний .

Как научиться

Здесь мы попытались предоставить как можно более простой способ изучения диаграммы состояний языка UML .

Как и многие другие языки он использует для описания набор знаков. Смысл этих знаков вы найдете в таблице в разделе «Замечания (описание)». Каждый знак имеет свое наименование (термин) и написание. Также каждый термин снабжен кратким пояснением, чтобы быстро уяснить его основную суть.

Далее мы бы рекомендовали перейти в раздел «Примеры» диаграмм состояний , чтобы попробовать свои силы в чтении разных диаграмм. Затем стоит изучить раздел «Применение», так как, хотя и количество типов диаграмм в UML невелико, максимум преимуществ от их использования вы сможете получить только если будете применять соответствующие диаграммы по назначению.

Пример использования

Диаграмма состояний (state machine diagrams) – это известная технология описания поведения системы. В том или ином виде диаграмма состояний существует с 1960 года, и на заре объектно-ориентированного программирования они применялись для представления поведения системы. В объектно-ориентированных подходах вы рисуете диаграмму состояний единственного класса, чтобы показать поведение одного объекта в течение его жизни.

Всякий раз, когда пишут о конечных автоматах, в качестве примеров неизбежно приводят системы круиз-контроля или торговые автоматы.
Мы решили использовать контроллер секретной панели управления в Готическом замке. В этом замке мы хотим так спрятать свои сокровища, чтобы их было трудно найти. Для того чтобы получить доступ к замку сейфа, мы должны вытащить из канделябра стратегическую свечу, но замок появится, только если дверь закрыта. После появления замка мы можем вставить в него ключ и открыть сейф. Для дополнительной безопасности мы сделали так, чтобы сейф можно было открыть только после извлечения свечи. Если вор не обратит внимания на эту предосторожность, то мы спустим с цепи отвратительного монстра, который проглотит вора.

На рис. 10.1 показана диаграмма состояний класса контроллера, который управляет моей необычной системой безопасности. Диаграмма состояния начинается с состояния создаваемого объекта контроллера: состояния Wait (Ожидание) . На диаграмме это обозначено с помощью начального псевдосостояния (initial pseudostate) , которое не является состоянием, но имеет стрелку, указывающую на начальное состояние.
На диаграмме показано, что контроллер может находиться в одном из трех состояний: Wait (Ожидание), Lock (Замок) и Open (Открыт) . На диаграмме также представлены правила, согласно которым контроллер переходит из одного состояния в другое. Эти правила представлены в виде переходов – линий, связывающих состояния.

Переход (transition) означает перемещение из одного состояния в другое. Каждый переход имеет свою метку, которая состоит из трех частей:
триггер-идентификатор [защита]/активность (trigger-signature /activity) . Все они не обязательны. Как правило, триггер-идентификатор – это единственное событие, которое может вызвать изменение состояния.

Защита, если она указана, представляет собой логическое условие, которое должно быть выполнено, чтобы переход имел место. Активность – это некоторое поведение системы во время перехода. Это может быть любое поведенческое выражение. Полная форма триггера-идентификатора может включать несколько событий и параметров. Переход из состояния Wait (рис. 10.1) в другое состояние можно прочесть как «В состоянии Wait , если свеча удалена, вы видите замок и переходите в состояние Lock ».

Все три части описания перехода не обязательны. Пропуск активности означает, что в процессе перехода ничего не происходит. Пропуск за щиты означает, что переход всегда осуществляется, если происходит инициирующее событие. Триггер-идентификатор отсутствует редко, но и так бывает. Это означает, что переход происходит немедленно, что можно наблюдать главным образом в состояниях активности.

Когда в определенном состоянии происходит событие, то из этого состояния можно совершить только один переход, например в состоянии Lock (рис. 10.1) защиты должны быть взаимно исключающими. Если событие происходит, а разрешенных переходов нет – например закрытие сейфа в состоянии Wait или удаление свечи при открытой двери, – событие игнорируется.

Конечное состояние (final state ) означает, что конечный автомат закончил работу, что вызывает удаление объекта контроллера. Так что для тех, кто имел неосторожность попасть в ловушку, сообщаем, что поскольку объект контроллера прекращает свое существование, мы вынуждены посадить кролика обратно в клетку, вымыть пол и перегрузить систему.

Помните, что конечные автоматы могут показывать только те объекты, которые непосредственно наблюдаются или действуют. Поэтому, хотя вы могли ожидать, что мы положим что-нибудь в сейф или что-нибудь возьмем оттуда, когда дверь открыта, мы не отметили это на диаграмме, поскольку контроллер об этом ничего сообщить не может.

Когда разработчики говорят об объектах, они часто ссылаются на состояние объектов, имея в виду комбинацию всех данных, содержащихся в полях объектов. Однако состояние на диаграмме конечного автомата является более абстрактным понятием состояния; суть в том, что различные состояния предполагают различные способы реакции на события.

Внутренние активности в диаграмме состояний

Состояния могут реагировать на события без совершения перехода, используя внутренние активности (internal activities ), и в этом случае событие, защита и активность размещаются внутри прямоугольника состояния.

На рис. 10.2 представлено состояние с внутренними активностями символов и событиями системы помощи, которые вы можете наблюдать в текстовых полях редактора UI . Внутренняя активность подобна самопереходу (self-transition) – переходу, который возвращает в то же самое состояние. Синтаксис внутренних активностей построен по той же логической схеме события, защиты и процедуры.

На рис. 10.2 показаны также специальные активности: входная и выходная активности . Входная активность выполняется всякий раз, когда вы входите в состояние; выходная активность – всякий раз, когда вы покидаете состояние. Однако внутренние активности не инициируют входную и выходную активности ; в этом состоит различие между внутренними активностями и самопереходами .

Состояния активности в диаграмме состояний

В состояниях, которые мы описывали до сих пор, объект молчит и ожидает следующего события, прежде чем что-нибудь сделать. Однако возможны состояния, в которых объект проявляет некоторую активность.

Состояние Searching (Поиск) на рис. 10.3 является таким состоянием активности (activity state) : ведущаяся активность обозначается символом do/ ; отсюда термин do-activity (проявлять активность) . После того как поиск завершен, выполняются переходы без активности, например показ нового оборудования (Display New Hardware) . Если в процессе активности происходит событие отмены (cancel ), то do-активность просто прерывается и мы возвращаемся в состояние Update Hardware Window (Обновление окна оборудования).

И do-активности, и обычные активности представляют проявление некоторого поведения. Решающее различие между ними заключается в том, что обычные активности происходят «мгновенно» и не могут быть прерваны обычными событиями, тогда как do-активности могут выполняться в течение некоторого ограниченного времени и могут прерываться, как показано на рис. 10.3. Мгновенность для разных систем трактуется по-разному; для систем реального времени это может занимать несколько машинных инструкций, а для настольного программного обеспечения может составить несколько секунд.

В UML 1 обычные активности обозначались термином action (действие), а термин activity (активность) применялся только для do-активностей .

Суперсостояния

Часто бывает, что несколько состояний имеют общие переходы и внутренние активности. В таких случаях можно их превратить в подсостояния (substates), а общее поведение перенести в суперсостояние (superstate), как показано на рис. 10.4. Без суперсостояния пришлось бы рисовать переход cancel (отмена) для всех трех состояний внутри состояния Enter Connection Details (Ввод подробностей соединения) .

Параллельные состояния

Состояния могут быть разбиты на несколько параллельных состояний, запускаемых одновременно. На рис. 10.5 показан простой будильник, который может включать либо CD, либо радио и показывать либо текущее время, либо время сигнала.

Опции CD/радио и текущее время/время сигнала являются параллельными. Если бы вы захотели представить это с помощью диаграммы непараллельных состояний, то получилась бы беспорядочная диаграмма при необходимости добавить состояния. Разделение двух областей поведения на две диаграммы состояний делает ее значительно яснее.

Рис. 10.5 включает также состояние предыстории (history pseudostate). Это означает, что когда включены часы, опция радио/CD переходит в состояние, в котором находились часы, когда они были выключены. Стрелка, выходящая из предыстории, показывает, какое состояние существовало изначально, когда отсутствовала предыстория.

Реализация диаграмм состояний

Диаграмму состояний можно реализовать тремя основными способами: с помощью вложенного оператора switch, паттерна State и таблицы состояний. Самый прямой подход в работе с диаграммами состояний – это вложенный оператор switch, такой как на рис. 10.6.

Хотя этот способ и прямой, но очень длинный даже для этого простого случая. Кроме того, при данном подходе очень легко потерять контроль, поэтому не рекомендуем применять его даже в элементарных ситуациях.
Паттерн «Состояние» (State pattern) представляет иерархию классов состояний для обработки поведения состояний. Каждое состояние на диаграмме состояний имеет свой подкласс состояния. Контроллер имеет методы для каждого события, которые просто перенаправляют к классу состояния. Диаграмма состояний, показанная на рис. 10.1, могла бы быть реализована с помощью классов, представленных на рис. 10.7.

Вершиной иерархии является абстрактный класс, который содержит описание всех методов, обрабатывающих события, но без реализации.
Для каждого конкретного состояния достаточно переписать метод-обработчик определенного события, инициирующего переход из состояния.
Таблица состояний представляет диаграмму состояний в виде данных.

Так, диаграмма на рис. 10.1 может быть представлена в виде табл. 10.1.
Затем мы строим интерпретатор, который использует таблицу состояний во время выполнения программы, или генератор кода, который порождает классы на основе этой таблицы.

Очевидно, большая часть работы над таблицей состояний проводится однажды, но затем ее можно использовать всякий раз, когда надо решить проблему, связанную с состояниями. Таблица состояний времени выполнения может быть модифицирована без перекомпиляции, что в некотором смысле удобно. Шаблон состояний собрать легче, и хотя для каждого состояния требуется отдельный класс, но размер кода, который при этом надо написать, совсем невелик.

Приведенные реализации практически минимальные, но они дают представление о том, как применять диаграммы состояний . В каждом случае реализация моделей состояний приводит к довольно стереотипной программе, поэтому обычно для этого лучше прибегнуть к тому или иному способу генерации кода.

Подписывайтесь на новости сайта, форму подписки вы можете найти в правой колонке сайта.

Если вы хотите научиться работать на фрилансе профессионально, приглашаем на курс « ».

Все диаграммы UML можно условно разбить на две группы, первая из которых ‒ общие диаграммы. Общие диаграммы практически не зависят от предмета моделирования и могут применяться в любом программном проекте без оглядки на предметную область, область решений и т.д.

1.5.1. Диаграмма использования

Диаграмма использования (use case diagram) ‒ это наиболее общее представление функционального назначения системы.

Диаграмма использования призвана ответить на главный вопрос моделирования: что делает система во внешнем мире?

На диаграмме использования применяются два типа основных сущностей: варианты использования 1 и действующие лица 2 , между которыми устанавливаются следующие основные типы отношений:

  • ассоциация между действующим лицом и вариантом использования 3 ;
  • обобщение между действующими лицами 4 ;
  • обобщение между вариантами использования 5 ;
  • зависимости (различных типов) между вариантами использования 6 .

На диаграмме использования, как и на любой другой, могут присутствовать комментарии 7 . Более того, это настоятельно рекомендуется делать для улучшения читаемости диаграмм.

Основные элементы нотации, применяемые на диаграмме использования, показаны ниже. Детальное описание приведено в разделе 2.2 .

1.5.2. Диаграмма классов

Диаграмма классов (class diagram) ‒ основной способ описания структуры системы.

Это не удивительно, поскольку UML в первую очередь объектно-ориентированный язык, и классы являются основным (если не единственным) "строительным материалом".

На диаграмме классов применяется один основной тип сущностей: классы 1 (включая многочисленные частные случаи классов: интерфейсы, примитивные типы, классы-ассоциации и многие другие), между которыми устанавливаются следующие основные типы отношений:

  • ассоциация между классами 2 (с множеством дополнительных подробностей);
  • обобщение между классами 3 ;
  • зависимости (различных типов) между классами 4 и между классами и интерфейсами.

Некоторые элементы нотации, применяемые на диаграмме классов, показаны ниже. Детальное описание приведено в главе 3 .

1.5.3. Диаграмма автомата

Диаграмма автомата (state machine diagram) ‒ это один из способов детального описания поведения в UML на основе явного выделения состояний и описания переходов между состояниями.

В сущности, диаграммы автомата, как это следует из названия, представляют собой граф переходов состояний (см. главу 4), нагруженный множеством дополнительных деталей и подробностей.

На диаграмме автомата применяют один основной тип сущностей ‒ состояния 1 , и один тип отношений ‒ переходы 2 , но и для тех и для других определено множество разновидностей, специальных случаев и дополнительных обозначений. Перечислять их все во вступительном обзоре не имеет смысла.

Детальное описание всех вариаций диаграмм автомата приведено в разделе 4.2 , а на следующем рисунке показаны только основные элементы нотации, применяемые на диаграмме автомата.

1.5.4. Диаграмма деятельности

Диаграмма деятельности (activity diagram) ‒ способ описания поведения на основе указания потоков управления и потоков данных.

Диаграмма деятельности ‒ еще один способ описания поведения, который визуально напоминает старую добрую блок-схему алгоритма. Однако за счет модернизированных обозначений, согласованных с объектно-ориентированным подходом, а главное, за счет новой семантической составляющей (свободная интерпретация сетей Петри), диаграмма деятельности UML является мощным средством для описания поведения системы.

На диаграмме деятельности применяют один основной тип сущностей ‒ действие 1 , и один тип отношений ‒ переходы 2 (передачи управления и данных). Также используются такие конструкции как развилки, слияния, соединения, ветвления 3 , которые похожи на сущности, но таковыми на самом деле не являются, а представляют собой графический способ изображения некоторых частных случаев многоместных отношений. Семантика элементов диаграмм деятельности подробно разобрана в главе 4 . Основные элементы нотации, применяемые на диаграмме деятельности, показаны ниже.

1.5.5. Диаграмма последовательности

Диаграмма последовательности (sequence diagram) ‒ это способ описания поведения системы на основе указания последовательности передаваемых сообщений.

Фактически, диаграмма последовательности ‒ это запись протокола конкретного сеанса работы системы (или фрагмента такого протокола). В объектно-ориентированном программировании самым существенным во время выполнения является пересылка сообщений между взаимодействующими объектами. Именно последовательность посылок сообщений отображается на данной диаграмме, отсюда и название.

На диаграмме последовательности применяют один основной тип сущностей ‒ экземпляры взаимодействующих классификаторов 1 (в основном классов, компонентов и действующих лиц), и один тип отношений ‒ связи 2 , по которым происходит обмен сообщениями 3 . Предусмотрено несколько способов посылки сообщений, которые в графической нотации различаются видом стрелки, соответствующей отношению.

Важным аспектом диаграммы последовательности является явное отображение течения времени. В отличие от других типов диаграмм, кроме разве что диаграмм синхронизации, на диаграмме последовательности имеет значение не только наличие графических связей между элементами, но и взаимное расположение элементов на диаграмме. А именно, считается, что имеется (невидимая) ось времени, по умолчанию направленная сверху вниз, и то сообщение, которое отправлено позже, нарисовано ниже.

Ось времени может быть направлена горизонтально, в этом случае считается, что время течет слева направо.

На следующем рисунке показаны основные элементы нотации, применяемые на диаграмме последовательности. Для обозначения самих взаимодействующих объектов применяется стандартная нотация ‒ прямоугольник с именем экземпляра классификатора. Пунктирная линия, выходящая из него, называется линией жизни (lifeline) 4 . Это не обозначение отношения в модели, а графический комментарий, призванный направить взгляд читателя диаграммы в правильном направлении. Фигуры в виде узких полосок, наложенных на линию жизни, также не являются изображениями моделируемых сущностей. Это графический комментарий, показывающий отрезки времени, в течении которых объект владеет потоком управления (execution occurrence) 5 или другими словами имеет место активация (activation) объекта. Составные шаги взаимодействия(combined fragment) 6 позволяют на диаграмме последовательности, отражать и алгоритмические аспекты протокола взаимодействия. Прочие детали нотации диаграммы последовательностей см. в главе 4 .

1.5.6. Диаграмма коммуникации

Диаграмма коммуникации (communication diagram) ‒ способ описания поведения, семантически эквивалентный диаграмме последовательности.

Фактически, это такое же описание последовательности обмена сообщениями взаимодействующих экземпляров классификаторов, только выраженное другими графическими средствами. Более того, большинство инструментов умеет автоматически преобразовывать диаграммы последовательности в диаграммы коммуникации и обратно.

Таким образом, на диаграмме коммуникации также как и на диаграмме последовательности применяют один основной тип сущностей ‒ экземпляры взаимодействующих классификаторов 1 и один тип отношений ‒ связи 2 . Однако здесь акцент делается не на времени, а на структуре связей между конкретными экземплярами.

На рисунке показаны основные элементы нотации, применяемые на диаграмме коммуникации. Для обозначения самих взаимодействующих объектов применяется стандартная нотация ‒ прямоугольник с именем экземпляра классификатора. Взаимное положение элементов на диаграмме кооперации не имеет значения ‒ важны только связи (чаще всего экземпляры ассоциаций), вдоль которых передаются сообщения 3 . Для отображения упорядоченности сообщений во времени применяется иерархическая десятичная нумерация.

1.5.7. Диаграмма компонентов

Диаграмма компонентов (component diagram) ‒ показывает взаимосвязи между модулями (логическими или физическими), из которых состоит моделируемая система.

Основной тип сущностей на диаграмме компонентов ‒ это сами компоненты 1 , а также интерфейсы 2 , посредством которых указывается взаимосвязь между компонентами. На диаграмме компонентов применяются следующие отношения:

  • реализации между компонентами и интерфейсами (компонент реализует интерфейс);
  • зависимости между компонентами и интерфейсами (компонент использует интерфейс) 3 .

На рисунке показаны основные элементы нотации, применяемые на диаграмме компонентов. Детальное описание приведено в главе 3 .

1.5.8. Диаграмма размещения

Диаграмма размещения (deployment diagram) наряду с отображением состава и связей элементов системы показывает, как они физически размещены на вычислительных ресурсах во время выполнения.

Таким образом, на диаграмме размещения, по сравнению с диаграммой компонентов, добавляется два типа сущностей: артефакт 1 , который является реализацией компонента 2 и узел 3 (может быть как классификатор, описывающий тип узла, так и конкретный экземпляр), а также отношение ассоциации между узлами 4 , показывающее, что узлы физически связаны во время выполнения.

На рисунке показаны основные элементы нотации, применяемые на диаграмме размещения. Для того чтобы показать, что одна сущность является частью другой, применяется либо отношение зависимости «deploy» 5 , либо фигура одной сущности помещается внутрь фигуры другой сущности 6 . Детальное описание диаграммы приведено в главе 3 .

Я думаю, каждый слышал в детстве такую поговорку как "Семь раз отмерь, один раз отрежь ". В программировании так же. Лучше всегда обдумать реализацию до того, как вы потратите время на её исполнение. Часто приходится при реализации создавать классы, придумывать их взаимодействие. И часто визуальное представление этого может помочь решить задачу наиболее правильным образом. В этом нам и помогает UML .

Что такое UML?

Если посмотреть картинки в поисковых системах, то станет понятно, что UML – это что-то про схемы, стрелочки и квадратики. Что важно, что UML переводится как Unified Modeling Language . Важно тут слово Unified. То есть наши картинки поймём не только мы, но и остальные, кто знает UML. Получается это такой международный язык рисования схем.

Как гласит Википедия

UML - это язык графического описания для объектного моделирования в области разработки программного обеспечения, моделирования бизнес-процессов, системного проектирования и отображения организационных структур.
Самое интересное, о чём не все задумываются или догадываются, UML имеет спецификации. Причём даже есть спецификация UML2. Подробнее со спецификацией можно ознакомиться на сайте Object Management Group . Собственно, эта группа и занимается разработкой спецификаций UML. Интересно и то, что UML не ограничивается описанием структуры классов. Существует множество типов UML диаграмм. Краткое описание типов UML диаграмм можно увидеть в той же Википедии: UML - диаграммы или в видео Тимура Батыршинова Обзор UML диаграмм . UML так же широко применяется при описании различных процессов, например здесь: Единый вход с использованием JWT . Возвращаясь к использованию UML диаграмм классов, стоит отметить книгу Head First: Паттерны проектирования , в которой паттерны иллюстрируются теми самыми UML диаграммами. Выходит, что UML действительно используется. И выходит, что знание и понимание его применения довольно полезный навык.

Применение

Разберём, как с этим самым UML можно работать из IDE. В качестве IDE возьмём IntelliJ Idea . Если использовать IntelliJ Idea Ultimate , то у нас "из коробки" будет установлен плагин "UML Support ". Он позволяет автоматически генерировать красивые диаграммы классов. Например, через Ctrl+N или пункт меню "Navigate" -> "Class" перейдём в класс ArrayList . Теперь, через контекстное меню по имени класса выберем "Diagram" -> "Show diagram popup". В результате мы получим красивую диаграмму:

Но что, если хочется самому нарисовать, да ещё и нет Ultimate версии Idea? Если мы используем IntelliJ Idea Community Edition, то у нас нет другого выбора. Для этого нужно понять, как такая UML схема устроена. Для начала нам понадобится установить Graphviz . Это набор утилит для визуализации графов. Его использует плагин, который мы будем применять. После установки необходимо добавить каталог bin из каталога установленного Graphviz в переменную среды окружения PATH . После этого в IntelliJ Idea в меню выбрать File -> Settings. В окне "Settings" выбрать категорию "Plugins", нажать кнопку "Browse repositories" и установить плагин PlantUML integration . Чем так хорош этот PlantUML ? Он использует для описания UML язык описания графов под названием "dot " и это позволяет ему быть более универсальным, т.к. данный язык используется не только PlantUML. Более того, всё что мы ниже сделаем мы можем выполнить не только в IDE, но и в онлайн сервисе planttext.com . После установки плагина PlantUML у нас появится возможность через "File" -> "New" создавать UML диаграммы. Давайте выполним создание диаграммы типа "UML class". В ходе этого автоматически генерируется шаблон с примером. Удалим его содержимое и создадим своё, вооружившись статьёй с Хабра: Отношения классов - от UML к коду . А чтобы понять, как это изобразить в тексте, возьмём мануал по PlantUML: plantuml class-diagram . В нём в самом начале представлена табличка с тем, как нужно описывать связи:

Про сами же связи можем ещё подсматривать сюда: "Отношения между классами в UML. Примеры ". На основе этих материалов приступим к созданию нашей UML диаграммы. Добавим следующее содержимое, описывающее два класса: @startuml class ArrayList { } class LinkedList { } @enduml Чтобы увидеть результат в Idea, выберем "View" -> "Tool Windows" -> "PlantUML". Мы получим просто два квадрата, обозначающие классы. Как мы знаем, оба эти класса реализуют интерфейс List. Данное отношение классов так и называют - реализация (realization). Для изображения такой связи используют стрелку с пунктирной линией. Изобразим её: interface List List < | . . ArrayList List < | . . LinkedList List - один из дочерних классов Collection . То есть он наследуется от Collection. Эта связь называется обобщением (generalization). Выглядит как стрелка с обычной непрерывной линией. Изобразим её: interface Collection Collection < | -- List Для следующего типа связи добавим в описание класса ArrayList запись о package private массиве элементов: ~ Object elementData Теперь мы хотим показать, что ArrayList содержит какие-то объекты. В данном случае будет тип связи - агрегация (aggregation). Агрегатом в данном случае является ArrayList , т.к. он содержит другие объекты. Агрегацию мы выбираем потому, что объекты в списке могут жить и без списка: они не являются его неотъемлемыми частями. Их время жизни не привязано к времени жизни списка. Агрегат с латинского переводится как "собранный", то есть что-то, составленное из чего-то. Например, в жизни, есть насосный агрегат, который состоит из насоса и двигателя. Сам агрегат можно разобрать, оставив что-то из его составных частей. Например, чтоб продать или поставить в другой агрегат. Так и в списке. И выражается это в виде пустого ромбика у агрегата и непрерывной линии. Изобразим это следующим образом: class Object { } ArrayList o- Object Теперь мы хотим показать, что в отличие от ArrayList , класс LinkedList содержит в себе Node - контейнеры, ссылающиеся на хранимые данные. В данном случае Node являются частью самого LinkedList и не могут жить отдельно. Node не является непосредственнохранимым содержимым, а только содержит ссылку на него. Например, когда мы добавляем в LinkedList какую-нибудь строку, мы добавляем новый Node , который содержит ссылку на эту строку, а также ссылку на предыдущий и следующий Node . Такой тип связи называется композицией (Composition). Для отображения у композита (того, кто состоит из частей) рисуется закрашенный робмик, к нему ведёт непрерывная линия. Запишем теперь это в виде текстового отображения связи: class Node { } LinkedList * -- Node И теперь необходимо научиться отображать ещё один важный тип связи - зависимость (dependency relationship). Он используется тогда, когда один класс использует другой, при этом класс не содержит в себе используемый класс и не является его наследником. Например, LinkedList и ArrayList умеют создавать ListIterator . Отобразим это в виде стрелок с пунктирной линией: class ListIterator ListIterator < . . . ArrayList : create ListIterator < . . . LinkedList : create Выглядеть после всего это будет следующим образом:

Детализировать можно настолько, насколько это необходимо. Все обозначения указаны тут: "PlantUML - Диаграмма классов ". Кроме того, в рисовании такой схемы нет ничего сверхъестественного, и при работе над своими задачами её можно быстро рисовать от руки. Это позволит развить навыки продумывания архитектуры приложения и поможет выявить недостатки структуры классов на раннем этапе, а не когда вы уже потратите день на реализацию неправильной модели. Мне кажется, это неплохая причина для того, чтобы попробовать?)

Автоматизация

Есть различные способы автоматической генерации PlantUML диаграмм. Например, в Idea есть плагин SketchIT , но рисует он их не совсем правильно. Скажем, неправильно рисуется имплементация интерфейсов (отображается как наследование). Также в интернете есть примеры того, как это встроить в жизненный цикл сборки вашего проекта. Допустим, для Maven есть пример использования uml-java-docklet . Для того, чтобы показать как это, воспользуемся Maven Archetype для быстрого создания Maven проекта. Выполним команду: mvn archetype:generate На вопросе выбора фильтра (Choose a number or apply filter ) оставляем default, просто нажав Enter. Это всегда будет "maven-archetype-quickstart ". Выбираем самую последнюю версию. Далее отвечаем на вопросы и завершаем создание проекта:

Так как Maven не является целью данной статьи, ответы на свои вопросы по Maven можно найти в Maven Users Centre . В сгенерированном проекте откроем на редактирование файл описания проекта, pom.xml . В него скопируем содержимое из описания uml-java-docklet installing . Используемый в описании артефакт не удалось найти в репозитории Maven Central. Но у меня заработало с этим: https://mvnrepository.com/artifact/com.chfourie/uml-java-doclet/1.0.0 . То есть надо в том описании просто заменить groupId с "info.leadinglight " на "com.chfourie " и поставить версию "1.0.0 ". После этого можем выполнить в каталоге, где находится файл pom.xml эти комманды: mvn clean install и mvn javadoc:javadoc . Теперь, если открыть сгенерированную документацию (explorer target\site\apidocs\index.html), мы увидим UML схемы. Кстати, имплементация тут уже отображается верно)

Заключение

Как видно, UML позволяет визуализировать структуру вашего приложения. Кроме того, UML не ограничивается только этим. При помощи UML можно описывать различные процессы внутри вашей компании или описывать бизнес-процесс, в рамках которого работает функция, которую вы пишите. На сколько UML полезен лично для вас - решать вам, но найти время и ознакомиться более подробным будет в любом случае полезно. #Viacheslav English version of this post: UML diagram Java on CodeGym

UML-диаграмма - это специализированный язык графического описания, предназначенный для объектного моделирования в сфере разработки различного программного обеспечения. Данный язык имеет широкий профиль и представляет собой открытый стандарт, в котором используются различные графические обозначения, чтобы создать абстрактную модель системы. UML создавался для того, чтобы обеспечить определение, визуализацию, документирование, а также проектирование всевозможных программных систем. Стоит отметить, что сама по себе UML-диаграмма не представляет собой язык программирования, но при этом предусматривается возможность генерации на ее основе отдельного кода.

Зачем она нужна?

Применение UML не заканчивается на моделировании всевозможного ПО. Также данный язык активно сегодня используется для моделирования различных бизнес-процессов, ведения системного проектирования, а также отображения организационных структур.

С помощью UML разработчики программного обеспечения могут обеспечить полное соглашение в используемых графических обозначениях, чтобы представить общие понятия, такие как: компонент, обобщение, класс, поведение и агрегация. За счет этого достигается большая степень концентрации на архитектуре и проектировании.

Также стоит отметить, что есть несколько видов таких диаграмм.

Диаграмма классов

Диаграмма классов UML представляет собой статическую структурную диаграмму, предназначенную для описания структуры системы, а также демонстрации атрибутов, методов и зависимостей между несколькими различными классами.

Стоит отметить тот факт, что есть несколько точек зрения на построение таких диаграмм в зависимости от того, каким образом они будут использоваться:

  • Концептуальная. В данном случае диаграмма классов UML осуществляет описание модели определенной предметной области, и в ней предусматриваются только классы прикладных объектов.
  • Специфическая. Диаграмма используется в процессе проектирования различных информационных систем.
  • Реализационная. Диаграмма классов включает в себя всевозможные классы, которые непосредственно используются в программном коде.

Диаграмма компонентов

Диаграмма компонентов UML представляет собой полностью статическую структурную диаграмму. Предназначается она для того, чтобы продемонстрировать разбиение определенной программной системы на разнообразные структурные компоненты, а также связи между ними. Диаграмма компонентов UML в качестве таковых может использовать всевозможные модели, библиотеки, файлы, пакеты, исполняемые файлы и еще множество других элементов.

Диаграмма композитной/составной структуры

UML диаграмма композитной/составной структуры также является статической структурной диаграммой, но используется она для того, чтобы показать внутреннюю структуру классов. По возможности данная диаграмма может продемонстрировать также взаимодействие элементов, находящихся во внутренней структуре класса.

Подвидом их является UML-диаграмма кооперации, которая используется для демонстрации ролей, а также взаимодействия различных классов в границах кооперации. Они являются достаточно удобными в том случае, если нужно моделировать шаблоны проектирования.

Стоит отметить, что одновременно могут использоваться виды диаграмм UML классов и композитной структуры.

Диаграмма развертывания

Данная диаграмма используется для того, чтобы моделировать работающие узлы, а также всевозможные артефакты, которые на них были развернуты. В UML 2 на различных узлах осуществляется разворачивание артефактов, в то время как в первой версии разворачивались исключительно компоненты. Таким образом, диаграмма развертывания UML используется преимущественно ко второй версии.

Между артефактом и тем компонентом, который он реализует, формируется зависимость манифестации.

Диаграмма объектов

Данный вид позволяет увидеть полноценный или же частичный снимок создаваемой системы в определенный момент времени. На ней полностью отображаются все экземпляры классов конкретной системы с указанием текущих значений их параметров, а также связей между ними.

Диаграмма пакетов

Эта диаграмма носит структурный характер, и основным ее содержанием являются всевозможные пакеты, а также отношения между ними. В данном случае нет никакого жесткого разделения между несколькими структурными диаграммами, вследствие чего их использование чаще всего встречается исключительно для удобства, и никакого семантического значения в себе не несет. Стоит отметить, что различные элементы могут предоставлять другие UML диаграммы (примеры: пакеты и сами диаграммы пакетов).

Их использование осуществляется для того, чтобы обеспечить организацию нескольких элементов в группы по определенному признаку, чтобы упростить структуру, а также организовать работу с моделью данной системы.

Диаграмма деятельности

Диаграмма деятельности UML отображает разложение определенной деятельности на несколько составных частей. В данном случае понятием «деятельность» называется спецификация определенного исполняемого поведения в виде параллельного, а также координированного последовательного выполнения различных подчиненных элементов - вложенных типов деятельности и различных действий, объединенных потоками, идущими от выходов определенного узла к входам другого.

Диаграмма деятельности UML достаточно часто используются для того, чтобы моделировать различные бизнес-процессы, параллельные и последовательные вычисления. Помимо всего прочего ими моделируются всевозможные технологические процедуры.

Диаграмма автомата

Этот вид называется и несколько иначе - диаграмма состояний UML. Имеет представленный конечный автомат с простыми и композитными состояниями, а также переходами.

Конечный автомат представляет собой спецификацию последовательности различных состояний, через которые проходит определенный объект, или же взаимодействие в ответ на некоторые события своей жизни, а также ответные действия объекта на такие события. Конечный автомат, который использует диаграмма состояний UML, закрепляется за исходным элементом и используется для того, чтобы определить поведение его экземпляров.

В качестве аналогов таких диаграмм могут использоваться так называемые дракон-схемы.

Диаграммы сценариев использования

Диаграмма вариантов использования UML отображает на себе все отношения, которые возникают между актерами, а также различными вариантами использования. Главная ее задача - осуществлять собой полноценное средство, при помощи которого заказчик, конечный пользователь или же какой-нибудь разработчик сможет совместно обсуждать поведение и функциональность определенной системы.

Если диаграмма вариантов использования UML используется в процессе моделирования системы, то аналитик собирается:

  • Четко отделить моделируемую систему от ее окружения.
  • Выявить действующих лиц, пути их взаимодействия с данной системой, а также ожидаемый ее функционал.
  • Установить в глоссарии в качестве предметной области различные понятия, которые относятся к подробному описанию функционала данной системы.

Если разрабатывается в UML диаграмма использования, процедура начинается с текстового описания, которое получается при работе с заказчиком. При этом стоит отметить тот факт, что различные нефункциональные требования в процессе составления модели прецедентов полностью опускаются, и для них уже будет формироваться отдельный документ.

Коммуникации

Диаграмма коммуникации точно так же, как и диаграмма последовательности UML, является транзитивной, то есть выражает в себе взаимодействие, но при этом демонстрирует его разными способами, и при необходимости с нужной степенью точности можно преобразовать одну в другую.

Диаграмма коммуникации отображает в себе взаимодействия, которые происходят между различными элементами композитной структуры, а также ролями кооперации. Главным отличием ее от диаграммы последовательности является то, что на ней достаточно явно указываются отношения между несколькими элементами, а время не используется в качестве отдельного измерения.

Данный тип отличается абсолютно свободным форматом упорядочивания нескольких объектов и связей точно так же, как это осуществляется в диаграмме объектов. Если есть необходимость в том, чтобы поддерживать порядок сообщений при этом свободном формате, осуществляется их хронологическая нумерация. Чтение данной диаграммы начинается с изначального сообщения 1.0, и впоследствии продолжается по тому направлению, по которому осуществляется передача сообщений от одного объекта к другому.

В большинстве своем такие диаграммы демонстрируют точно такую же информацию, которую предоставляет нам диаграмма последовательности, однако из-за того, что здесь используется другой способ представления информации, определенные вещи на одной диаграмме становится гораздо проще определить, чем на другой. Также стоит отметить, что диаграмма коммуникаций более наглядно показывает, с какими элементами вступает во взаимодействие каждый отдельный элемент, в то время как диаграмма последовательности более ясно показывает, в каком порядке осуществляются взаимодействия.

Диаграмма последовательности

Диаграмма последовательности UML демонстрирует взаимодействия между несколькими объектами, которые упорядочиваются в соответствии с временем их проявления. На такой диаграмме отображается упорядоченное во времени взаимодействие между несколькими объектами. В частности, на ней отображаются все объекты, которые принимают участие во взаимодействии, а также полная последовательность обмениваемых ими сообщений.

Главными элементами в данном случае выступают обозначения различных объектов, а также вертикальные линии, отображающие течение времени и прямоугольники, предоставляющие деятельность определенного объекта или же выполнение им какой-либо функции.

Диаграмма сотрудничества

Данный тип диаграмм позволяет продемонстрировать взаимодействия между несколькими объектами, абстрагируясь от последовательности трансляции сообщений. Данный тип диаграмм в компактном виде отображает в себе абсолютно все передаваемые и принимаемые сообщения определенного объекта, а также форматы этих сообщений.

По причине того, что диаграммы последовательности и коммуникации представляют собой просто-напросто разный взгляд на одни и те же процедуры, Rational Rose предоставляет возможность создавать из диаграммы последовательности коммуникационную или же наоборот, а также осуществляет полностью автоматическую их синхронизацию.

Диаграммы обзора взаимодействия

Это диаграммы языка UML, которые относятся к разновидности диаграмм деятельности и включают в себя одновременно элементы Sequence и конструкции потока управления.

Стоит отметить тот факт, что данный формат объединяет в себе Collaboration и Sequence diagram, которые предоставляют возможность с разных точек зрения рассматривать взаимодействие между несколькими объектами в формируемой системе.

Диаграмма синхронизации

Представляет собой альтернативный вариант диаграммы последовательности, который явным образом демонстрирует изменение состояния на линии жизни с определенной шкалой времени. Может быть достаточно полезной в различных приложениях реального времени.

В чем преимущества?

Стоит отметить несколько преимуществ, которыми отличается UML диаграмма пользования и другие:

  • Язык является объектно-ориентированным, вследствие чего технологии описания результатов проведенного анализа и проектирования являются семантически близкими к методам программирования на всевозможных объектно-ориентированных языках современного типа.
  • При помощи данного языка система может быть описана практически с любых возможных точек зрения, и точно так же описываются различные аспекты ее поведения.
  • Все диаграммы являются сравнительно простыми для чтения даже после относительно быстрого ознакомления с его синтаксисом.
  • UML позволяет расширить, а также вводить собственные графические и текстовые стереотипы, что способствует его использованию не только в программной инженерии.
  • Язык получил достаточно широкое распространение, а также довольно активно развивается.

Недостатки

Несмотря на то что построение UML-диаграмм отличается массой своих плюсов, довольно часто их и критикуют за следующие недостатки:

  • Избыточность. В преимущественном большинстве случаев критики говорят о том, что UML является слишком большим и сложным, и зачастую это неоправданно. В него входит достаточно много избыточных или же практически бесполезных конструкций и диаграмм, причем наиболее часто подобная критика идет в адрес второй версии, а не первой, потому что в более новых ревизиях присутствует большее количество компромиссов «разработанных комитетом».
  • Различные неточности в семантике. По той причине, что UML определяется комбинацией себя, английского и OCL, у него отсутствует скованность, которая является присущей для языков, точно определенных техникой формального описания. В определенных ситуациях абстрактный синтаксис OCL, UML и английский начинают друг другу противоречить, в то время как в других случаях они являются неполными. Неточность описания самого языка одинаково отражается как на пользователях, так и на поставщиках инструментов, что в конечном итоге приводит к несовместимости инструментов из-за уникального способа трактовки различных спецификаций.
  • Проблемы в процессе внедрения и изучения. Все указанные выше проблемы создают определенные сложности в процессе внедрения и изучения UML, и в особенности это касается тех случаев, когда руководство заставляет инженеров насильно его использовать, в то время как у них отсутствуют предварительные навыки.
  • Код отражает код. Еще одним мнением является то, что важность имеют не красивые и привлекательные модели, а непосредственно рабочие системы, то есть код и есть проект. В соответствии с данным мнением есть потребность в том, чтобы разработать более эффективный способ написания программного обеспечения. UML принято ценить при подходах, компилирующих модели для регенерирования выполнимого или же исходного кода. Но на самом деле этого может быть недостаточно, потому что в данном языке отсутствуют свойства полноты по Тьюрингу, и каждый сгенерированный код в конечном итоге будет ограничиваться тем, что может предположить или же определить интерпретирующий UML инструмент.
  • Рассогласование нагрузки. Данный термин происходит из теории системного анализа для определения неспособности входа определенной системы воспринять выход иной. Как в любых стандартных системах обозначений, UML может представлять одни системы в более эффективном и кратком виде по сравнению с другими. Таким образом, разработчик больше склоняется к тем решениям, которые являются более комфортными для переплетения всех сильных сторон UML, а также других языков программирования. Данная проблема является более очевидной в том случае, если язык разработки не соответствует основным принципам объектно-ориентированной ортодоксальной доктрины, то есть не старается работать в соответствии с принципами ООП.
  • Пытается быть универсальным. UML представляет собой язык моделирования общего назначения, который старается обеспечить совместимость с любым существующим на сегодняшний день языком обработки. В контексте определенного проекта, для того, чтобы команда проектировщиков смогла добиться конечной цели, нужно выбирать применимые возможности этого языка. Помимо этого возможные пути ограничения сферы использования UML в какой-то определенной области проходят через формализм, который является не полностью сформулированным, а который сам представляет собой объект критики.

Таким образом, использование данного языка является актуальным далеко не во всех ситуациях.

Модель UML (UML model) ‒ это совокупность конечного множества конструкций языка, главные из которых ‒ это сущности и отношения между ними.

Сами сущности и отношения модели являются экземплярами метаклассов метамодели.

Рассматривая модель UML с наиболее общих позиций, можно сказать, что это граф (точнее, нагруженный мульти-псевдо-гипер-орграф), в котором вершины и ребра нагружены дополнительной информацией и могут иметь сложную внутреннюю структуру. Вершины этого графа называются сущностями, а ребра ‒ отношениями . Остальная часть раздела содержит беглый (предварительный), но полный обзор имеющихся типов сущностей и отношений. К счастью, их не слишком много. В последующих главах книги все сущности и отношения рассматриваются еще раз, более детально и с примерами.

1.4.1. Сущности

Для удобства обзора сущности в UML можно подразделить на четыре группы:

  • структурные;
  • поведенческие;
  • группирующие;
  • аннотационные.

Структурные сущности, как нетрудно догадаться, предназначены для описания структуры. Обычно к структурным сущностям относят следующие.

Объект (object) 1 ‒ сущность, обладающая уникальностью и инкапсулирующая в себе состояние и поведение.

Класс (class) 2 ‒ описание множества объектов с общими атрибутами, определяющими состояние, и операциями, определяющими поведение.

Интерфейс (interface) 3 ‒ именованное множество операций, определяющее набор услуг, которые могут быть запрошены потребителем и предоставлены поставщиком услуг.

Кооперация (collaboration) 4 ‒ совокупность объектов, которые взаимодействуют для достижения некоторой цели.

Действующее лицо (actor) 5 ‒ сущность, находящаяся вне моделируемой системы и непосредственно взаимодействующая с ней.

∇ Подобная взаимосвязь безусловно существует, что выражается на рис. Иерархия типов диаграмм для UML 1 в виде отношения зависимости со стереотипом «refine» .

∇∇ В UML 1 возникала невольная ассоциация между диаграммой кооперации и одноименной сущностью, что было не совсем верно и порой вводило в заблуждение.

∇∇∇ В UML 2 синтаксическая и смысловая нагрузка диаграммы состояний настолько изменилась, что название уже не отражало содержания.

Список новых диаграмм и их названий, принятых в этой книге, приведен ниже.

  • Диаграмма внутренней структуры (Composite Structure diagram)
  • Диаграмма пакетов (Package diagram)
  • Диаграмма автомата (State machine diagram)
  • Диаграмма коммуникации (Communication diagram)
  • Обзорная диаграмма взаимодействия (Interaction Overview diagram)
  • Диаграмма синхронизации (Timing diagram)

На рис. Иерархия типов диаграмм для UML 2 (часть 1 и 2) приведена диаграмма классов, отражающая взаимосвязь диаграмм в UML 2.

Далее в этой главе мы очень бегло опишем все тринадцать канонических диаграмм, с тем, чтобы иметь определенный контекст и словарный запас для последующего изложения. Детали изложены в остальных главах книги.

Но прежде чем перейти к следующему разделу, сделаем одно небольшое отступление относительно того, как стандарт требует оформлять диаграммы. Общий шаблон представления диаграммы приведен ниже.

Основных элементов оформления два: наружная рамка и ярлычок с названием диаграммы. Если с рамкой все просто ‒ это прямоугольник, ограничивающий область в котором должны находиться элементы диаграммы, то название диаграммы записывается в специальном формате, приведенном на рис. Нотация для диаграмм .

Указанная сложная форма ярлычка поддерживается не всеми инструментами. Впрочем, это не обязательно, поскольку семантика первична, а нотация вторична. Далее мы везде используем в качестве ярлычка диаграммы прямоугольник, и это не должно вызывать недоразумений.

Возможные теги (типы) для диаграмм приведены в следующей таблице. Теги, предлагаемые стандартом, записаны во второй столбец. Однако, как показала практика, предлагаемые стандартом правила не всегда удобны и логически обоснованы, поэтому третий столбец таблицы содержит разумную на наш взгляд альтернативу.

Табл. Типы и теги диаграмм

Название диаграммы Тег (стандартный) Тег (предлагаемый)
Диаграмма использования use case или uc use case
Диаграмма классов class class
Диаграмма автомата state machine или stm state machine
Диаграмма деятельности activity или act activity
Диаграмма последовательности interaction или sd sd
Диаграмма коммуникации interaction или sd comm
Диаграмма компонентов component или cmp component
Диаграмма размещения не определен deployment
Диаграмма объектов не определен object
Диаграмма внутренней структуры class class или component
Обзорная диаграмма взаимодействия interaction или sd interaction
Диаграмма синхронизации interaction или sd timing
Диаграмма пакетов package или pkg package