Ламинарный профиль. Сравнительный анализ профилей крыла для скоростных маневренных моделей Симметричный профиль

Предлагаю вашему вниманию статью из цикла материалов в помощь самодеятельным конструкторам СЛА. Научный консультант - профессор кафедры самолетостроения Московского авиационного института, доктор технических наук, лауреат Государственной премии А.А. Бадягин. Статья была опубликована в журнале "Крылья Родины" №2 за 1987 год.

Зачем, спросите вы, нам статья про профиля для сверхлегких летательных аппаратов? Отвечаю - мысли выраженные в этой статье напрямую применимы в авиамоделизме - скорости сопоставимы, а соответственно и подход к конструированию.

Самый лучший профиль

Проектирование самолета обычно начинается с выбора профиля крыла. Посидев неделю-другую над справочниками и атласами, до конца в них не разобравшись, по совету товарища выбирает самый подходящий и строит самолет, который неплохо летает. Выбранный профиль объявляется лучшим. Другой любитель таким же образом выбирает совершенно непохожий профиль и его аппарат летает хорошо. У третьего самолет едва отрывается от земли, и вначале казавшийся наивыгоднейший профиль крыла считается уже не годным.

Очевидно, далеко не все зависит от конфигурации профиля. Попробуем разобраться в этом. Сравним два крыла с совершенно разными профилями, например с симметричным, установленным на Як-55 и несимметричным Clark YH - Як-50. Для сравнения определим несколько условий. Первое: крылья с разными профилями должны иметь удлинение (l).

l=I2/S,
где I - размах, S - площадь.

Второе: поскольку угол нулевой подъемная силы у симметричного профиля равен 00, его поляру (см. рис. 1) сместим влево, что физически будет соответствовать установке крыла на самолете с некоторым положительным углом заклинения.

Теперь взглянув на график можно легко сделать важный вывод: в диапазоне летных углов атаки характеристики крыла практически не зависят от формы профиля. Разумеется, речь идет об удобообтекаемых профилях, не имеющих зон интенсивного срыва потоков диапазоне летных углов атаки. На характеристики крыла, однако, можно существенно повлиять, увеличил удлинение. На графике 1 для сравнения показаны поляры крыльев с теми же профилями, но с удлинением 10. Как видим, они пошли гораздо круче или, как говорят, производная CУ по a стала выше (CУ - коэффициент подъемной силы крыла, a - угол атаки). Это означает, что при увеличении удлинения на одних и тех же углах атаки при, практически, одних и тех же коэффициентах сопротивления Cx можно получить более высокие несущие свойства.

Теперь поговорим о том, что же зависит от формы профиля.

Во-первых, профили имеют разный максимальный коэффициент подъемной силы CУ max. Так у симметричных коэффициент подъемной силы крыла равен 1.2 - 1.4, обычные несимметричные с выпуклой нижней поверхностью могут иметь - до 1.8, с сильной вогнутостью нижней поверхности он иногда достигает 2. Однако надо помнить, что профили с очень высоким CУ max обычно имеют высокие Cx и mz - коэффициент продольного момента. Для балансировки самолета с таким профилем хвостовое оперение должно развивать большую силу. В результате растет его аэродинамическое сопротивление, и общий выигрыш, полученный за счет высоко несущего профиля, существенно снижается.

CУ max существенно влияет только на минимальную скорость самолета - сваливание. Она во многом определяет простоту техники пилотирования машины. Однако влияние CУ max на скорость сваливания заметно проявляется при больших удельных нагрузках на крыло G/S (G - вес самолета). В то же время при нагрузках, характерных для любительских самолетов, то есть в 30 - 40 кг/м2, большой CУ max не имеет существенного значения. Так его увеличение с 1.2 до 1.6 на любительском самолете способно снизить скорость сваливания не более чем на 10 км/ч.

Во-вторых, форма профиля существенно влияет на характер поведения самолета на больших углах атаки, то есть на малых скоростях при заходе на посадку, при случайном "перетягивании ручки на себя". При этом для тонких профилей с относительно острым носком характерен резкий срыв потока, что сопровождается быстрой потерей подъемной силы и резким сваливанием самолета в штопор или на нос. Для более толстых с тупым носком характерен "мягкий срыв" с медленным падением подъемной силы. При этом летчик всегда успевает понять, что попал в опасный режим, и вывести машину на меньшие углы атаки, отдав ручку от себя. Особенно опасен резкий срыв, если крыло имеет сужение в плане и более тонкий профиль на конце крыла. В этом случае срыв потока наступает несимметрично, самолет резко сваливается на крыло и переходит в штопор. Именно такой характер появляется у самолетов Як-50 и Як-52, имеющих на конце сильно сужающегося крыла очень тонкий профиль (9% на конце и 14.5% у корня) с очень острым носком - Clark YH. Здесь выявляется важное свойство профилей: более тонкие имеют меньший Cy max и меньшие критические углы атаки, то есть углы, на которых происходит срыв потока.

Гораздо лучшими характеристиками сваливания обладают крылья с постоянной относительной толщиной профиля вдоль размаха. Например, Як-55 с крылом умеренного сужения с постоянным вдоль размаха 18-процентным профилем с тупым носком при выходе на большие углы атаки плавно опускает нос и переходит в пикирование, так как срыв потока наступает в корневой части крыла, что не создает кренящих моментов. Для получения корневого срыва потока лучше, если крыло вообще не имеет сужения в плане. Именно такие крылья установлены на большинстве самолетов первоначального обучения. Ранний корневой срыв можно вызвать также установкой на крыле наплыва, показанного на рис. 2. при этом корневой профиль получает меньшею относительную толщину и "менее несущую форму". Установка такого наплыва на экспериментальном Як-50 когда-то существенно изменила характер сваливания самолета: при выходе на большие углы атаки он уже не валился на крыло, а опускал нос и переходил в пикирование.

Третий парaметр, существенно зависящий от формы профиля, - коэффициент сопротивления Cx. Однако, как показывает практика любительского самолетостроения, его снижение на любительском самолете с удельной нагрузкой 30-40 кг/м2, имеющем максимальную скорость 200-250 км/ч., практически не влияет на летные характеристики. В этом скоростном диапазоне на летные данные практически не влияют и неубирающиеся шасси, подкосы, расчалки и т.д. Даже аэродинамическое качество планера зависит в первую очередь от удлинения крыла. И только при уровне аэродинамического качества 20-25 и l более 15 за счет подбора профиля качество можно повысить на 30-40%. В то время, как на любительском самолете с качеством 10-12 за счет самого удачного профиля качество можно повысить не более, чем на 5-10%. Гораздо проще такое увеличение при необходимости достигается подбором геометрии крыла в плане. Отметим еще одну особенность: в диапазоне скоростей любительских самолетов увеличение относительной толщины профиля вплоть до 18-20% не оказывает практически никакого влияния на аэродинамическое сопротивление крыла, в то же время коэффициент подъемной силы крыла заметно возрастает.

Существенное увеличение несущих характеристик крыла, как известно, может быть достигнуто за счет применения закрылков. Следует отметить одну особенность крыльев с закрылками: CУ max при их отклонении мало зависит от того, какой CУ max имел исходный профиль, а определяется, практически, только типом применяемого закрылка. Самый простой, получивший наибольшее распространение на зарубежных легкомоторных самолетах и его характеристики показаны на рис. 3.

Такие же закрылки используются на самолетах нашего любителя П. Альмурзина. Более эффективными являются щелевые, двухщелевые и подвесные закрылки. На рис. 4 показаны наиболее простые из них и поэтому чаше используемые.

CУ max с одно-щелевым закрылком может достигать 2.3-2.4 и с двухщелевым - 2.6 - 2.7. Во многих учебниках аэродинамики приводятся методики геометрического построения формы щели. Но практика показывает, что теоретически вычисленная щель все равно нуждается в доводке и тонкой настройке в аэродинамической трубе в зависимости от конкретной геометрии профиля, формы крыла и т.д. При этом щель либо работает, улучшая характеристики закрылка, либо не работает вообще, а вероятность того, что теоретически без продувок удается рассчитать и выбрать единственно возможную форму щели, крайне мала. Нечасто это удается даже профессиональным аэродинамикам, а тем более любителям. Поэтому в большинстве случаев на любительских самолетах щели на закрылках и элеронах, даже если они есть, не дают никакого эффекта, и сложный щелевой закрылок работает как простейший. Конечно, их можно пробовать на любительских аппаратах, но прежде стоит хорошо продумать, взвесив все "за" и "против".

И еще несколько практических советов, которые могут оказаться полезными при постройке любительских самолетов. Профиль крыла желательно очень точно выдерживать на участке от носка до точки максимальной толщины. Хорошо, если эта часть крыла имеет жесткую обшивку. Хвостовая часть может обтягиваться полотном и для упрощения технологии даже спрямляться "под линейку", как показано на рис.5. Лекальная хвостовая часть крыла при полотняной обшивке провисающей между нервюрами, большего смысла не имеет. Заднюю кромку крыла необязательно сводить на острый "нож". Она может иметь толщину 10-15 мм, но не более 1.5% хорды (см. рис. 5). На аэродинамических характеристиках крыла это совершенно не отражается, но эффективнсть элеронов несколько повышает, а технологию и конструкцию упрощает.

Важный элемент профиля - форма носка элерона. Наиболее распространенные варианты показаны на рис.6.

Профиль, образованный "параболой 100", используется на элеронах и рулях, имеющих осевую аэродинамическую компенсацию, когда носок выходит в поток, например на Як-55. такая "затупленная" форма носка при очень большой величине осевой аэродинамической компенсации (20% и выше) приводит к нелинейному росту усилий на ручке управления при отклонении элеронов или рулей. Лучшими в этом отношении являются "заостренные" носки, как на Су-26.

Для хвостового оперения используются симметричные крыльевые профили. Рули, как элероны, могут быть образованы прямолинейными дужками с затупленной задней кромкой. Достаточную эффективность имеет оперение с тонким плоским профилем, как на американских спортивно-пилотажных самолетах "Питтс", "Лазер" и других (см. рис. 7).

Жесткость и прочность оперения обеспечивается расчалками, оно получается очень легким и конструктивно простым. Относительная толщина профиля менее 5%. При такой толщине характеристики оперения вообще не зависят от формы профиля.

Приводим данные по наиболее подходящим для любительских летательных аппаратах профилям. Конечно, возможны и другие варианты, но отметим, что наилучшими свойствами в диапазоне скоростей любительских самолетов обладают 15-18-процентные с тупым носком и с максимальной относительной толщиной, расположенной в пределах 25% хорды.

Рекомендуемые профили имеют следующие особенности: P-II и P-III разработаны в ЦАГИ. У них высокие несущие свойства и хорошие характеристики на больших углах атаки. Широко использовались в 30 -40-х годах, находят применение и в наши дни.

NACA-23015 - последние две цифры означают относительную толщину в процентах, первыё - номер серии. Профиль имеет достаточно высокий Cy max при низком Cx, невысокий коэффициент продольного момента Mz что определяет небольшие потери на балансировку. Характер сваливания у самолётов с этим профилем "мягкий". NACA - 230 с относительной толщиной 12 - 18% используется на большинстве легкомоторных, в том числе и любительских, самолётов США.

NACA - 2418 - для скоростей менее 200 - 250 км/час считается более выгодным, чем NACA - 230. Применяется на многих самолётах, в том числе на чехословацких "Злинах".

GAW - суперкритический профиль разработанный американским аэродинамиком Уиткомбом для легких самолетов. Выгоден при скоростях более 300 км/ч. "Острый" носок предопределяет резкий срыв на больших углах атаки, "отогнутая" вниз задняя кромка способствует повышению Су max.

"Кри-Кри" - ламинаризированный планерный профиль, разработанный западногерманским аэродинамиком Вортманом и несколько измененный конструктором "Кри-Кри" французом Коломбаном. Относительная толщина профиля - 21,7%, за счет чего достигаются высокие несущие характеристики. Как и GAW-1, этот профиль требует очень высокой точности соблюдения теоретического контура и высокого качества отделки поверхности крыла. Приводим координаты профиля в мм, пересчитанные конструктором на хорду крыла самолета "Кри-Кри", равную 480 мм.

П-52 - современный профиль, разработанный в ЦАГИ для легкомоторных самолетов. Имеет тупой носок и спрямленную хвостовую часть.

Як-55 - симметричный профиль для спортивно-пилотажного самолета. На крыле относительная толщина 12-18%, на оперении - 15%. Характер сваливания самолета очень "мягкий" и плавный.

V-16 - французский симметричный профиль, имеет высокий Су max, используется на спортивных самолетах КАП-21, "Экстра-230" и других.

Су-26-18%, Су-26-12% - специальные профили для спортивно-пилотажных самолетов. Су-26-18% использован в корне крыла Су-26, Су-26-12% - в концевой части крыла и на оперении. Профиль имеет "острый" носок, что несколько снижает несущие свойства, но позволяет добиться очень чуткой реакции машины на отклонение рулей. Хотя для новичков такой самолет сложен в пилотировании, опытные спортсмены получают возможность выполнять фигуры, недоступные самолетам с "мягкой" замедленной реакцией на движение ручки, обусловленной тупым носком профиля. Срыв самолета с профилем типа Су-26 происходит быстро и резко, что необходимо при выполнении современных штопорных фигур. Вторая особенность - "поджатие" в хвостовой части, повышающее эффективность элеронов.

Крыло Су-26 имеет большие элероны, занимающие почти всю заднюю кромку. Если "сбить" нейтраль элеронов (обоих сразу) вниз на 10°, Су max увеличится приблизительно на 0,2, приближаясь к Су max хорошего несимметричного профиля. При этом Сх практически не растет, а аэродинамическое качество не падает, то же наблюдается и на других симметричных профилях. На этом основано использование элеронов, кинематически связанных с рулем высоты, выполняющих функции и элеронов, и закрылков одновременно, подобно закрылкам на кордовой пилотажной модели.

Правильный подбор профиля для свободнолетающей авиамодели - важнейший фактор достижения хороших летных качеств крылатого аппарата. Исходя из многолетнего опыта работы кружка краевой станции юных техников, предлагаем для воспроизведения целый ряд испытанных и отлично зарекомендовавших себя сечений для спортивных планеров-парителей.

Вариант № 1 подходит для условий тихой безветренной погоды и для моделей площадью 32-34 дм2 при удлинении крыла 13-15. При силе ветра 3-5 м/с и удлинении крыла 11-13 рекомендуются профили № 2 и 3. Варианты № 4 и 5 специально предназначены для тренировочных аппаратов с малым удлинением или же для условий сильно порывистого ветра.

Для небольших планеров, имеющих несущую площадь 17-19 дм2 (школьного подкласса), хорошо подходят профили № 6-9. При этом вариант № 6 в основном применяется для учебно-тренировочных моделей, а остальные - для чисто спортивных. Стабилизаторы же всех планеров делаются по схемам №10-12.

АВИАМОДЕЛЬНЫЕ ПРОФИЛИ

Genese №16 Clark-Y

Genese №16 Этот профиль был разработан специально для применения на авиамоделях при обтекании с малыми числами Рей-нольдса. Испытан сотрудниками редакции журнала на ряде авиамоделей (в частности, на модели самолета «Ностромо-35»). Обладает хорошими срывными характеристиками.

Позволяет сохранить небольшое значение посадочной скорости (приемлемое для пилота квалификации ниже средней) даже при удельной нагрузке на крыло 75-100 г/дм2. В целом не чувствителен к искажению формы, но жесткая обшивка лобика крыла все же предпочтительна. Плоская нижняя поверхность облегчает сборку конструкции. Может быть рекомендован для применения на учебных моделях, копиях и планерах. Clark-Y

Без всякой натяжки можно назвать профилем всех времен и народов. Первые достоверные результаты продувки были получены в лаборатории LMAL-NACA в 1924 году. До сих пор считается одним из лучших для учебно-тренировочных моделей. При применении на планерах по совокупности данных почти не уступает современным ламинарным профилям. Не чувствителен к искажению формы при использовании мягкой обшивки. Плоская нижняя поверхность облегчает сборку конструкции. Может быть рекомендован для применения на учебных моделях, копиях и планерах.

Имеет следующие характеристики: Су mах = 1,373, Cx min= 0,0106, См0=0,08, (Су/Сх)mах=22,4. На диаграмме нанесены кривые: поляра Су= f(Cx) с отметками углов атаки, кривая Су= f(α), кривая СмА= f(Cy), кривая Су/ Сх = f(α), кривая Сy= (1/πλ)Cy2.

ГРАФИК ОСНОВНЫХ ХАРАКТЕРИСТИК ПРОФИЛЯ CLARK-Y

АВИАМОДЕЛЬНЫЕ ПРОФИЛИ
Е-385 и Е-387

Профили крыла авиамоделей. Е-385 и Е-387 рекомендуются для планеров парящего типа. Профиль Е-387 (кстати, он наиболее популярен) при чуть меньших значениях подъемной силы имеет явно лучшие характеристики в зоне нулевой подъемной силы. Значит, планер, крылья которого оборудованы данным профилем, окажется, способен на полет с высокой скоростью при сохранении весьма высоких парящих качеств.

Е-385 больше подходит для чистокровных парителей, где проблема потенциальной быстроходности модели не так важна, как коэффициент мощности крыла. Имейте в виду, что для Е-385 СМО=-0,168, а для Е-387 Смо=-0,081 (практически в два раза меньше). Это означает, что балансировочные потери во втором случае будут меньше (можно закладывать в проект планера горизонтальное оперение уменьшенной эффективности).

Также более низкий уровень окажется и у крутильных нагрузок (этот фактор весьма важен при создании легких крыльев высокого удлинения). У упомянутых профилей отличаются и углы нулевой подъемной силы. Для Е-385 α0=-6,64°, а для Е-387 α0=-1,17°. Нижней границей допустимых чисел Рейнольдса для обоих профилей можно принять величину 100 000.

Достаточная относительная толщина профилей обеспечивает возможность постройки легких крыльев большого удлинения с традиционной силовой схемой. Хотя Е-385 и Е-387 относятся к ламиниризированным, на практике оказалось, что крылья моделей могут иметь широкую зону с мягкой обшивкой. Конечно, при этом лобик крыла шириной примерно в треть хорды должен иметь жесткую обшивку.

Кроме того, обводы этой части крыла желательно воспроизвести с максимальной точностью. На сегодняшний день в мире создано множество планеров, снабженных упомянутыми профилями. И существенной разницы между вариантами с полной жесткой обшивкой крыла и с частично мягкой не отмечалось нигде. Поэтому, если перед вами стоит проблема жесточайшей экономии веса модели, смело проектируйте крыло с пленочной обшивкой задней части.

ПРОФИЛЬ ДЛЯ СТАБИЛИЗАТОРА
HS3, NACA 0009, G-795

Профили для стабилизаторов HS3. В последнее время профилировка стабилизаторов стала весьма «стилизованной». Тем не менее, работы по поиску оптимальных решений не прекращаются. Так, можно вспомнить дипломную работу М. Хамма из института аэродинамики при техническом университете Штутгарта. Будущий инженер на рубеже 90-х годов разработал серию симметричных профилей HS1, HS2 и HS3.

Продувки показали, что при практически одинаковых координатах профилей HS2 и HS3 последний имеет уменьшенное сопротивление в диапазоне реальных летных углов атаки (отличие профилей только в том, что носик HS3 очень острый, совершенно без радиуса). При симметричной профилировке стабилизатора классическим решением можно признать выбор NACA 0009, а при плосковыпуклой профиль типа Clare-Y 8% или тот же G-795. Подборку профилей подготовил

(Источник журнал Моделизм спорт и хобби)

АВИАМОДЕЛЬНЫЙ ПРОФИЛЬ ЕБ-380

Несмотря на то, что практически все применяемые на авиамоделях современные профили имеют более чем «высокое происхождение» (создаются они настоящими учеными-аэродинамиками с привлечением сложных специализированных компьютерных программ и, как правило, потом проходят ряд испытаний в особых малотурбулентных аэродинамических трубах), изредка бывают исключения из этого правила.

Примером может служить профиль, полученный чехом Томашем Бартовским путем «скрещивания» двух весьма популярных профилей профессора Эп-плера - Е-387 и Е-374. К сожалению, в статье, опубликованной в чешском «Моделярже» в 1980, году не упоминалось, по какой методике шел поиск «золотой середины».

Однако было ясно, что Томаша не устраивала явная кривизна Е-387 и связанная с этим невозможность его применения на больших скоростях (при выходе на малые значения коэффициента подъемной силы Су для Е-387 характерен значительный рост коэффициента сопротивления Сх), а также недостаточная относительная толщина Е-374, не позволяющая изготавливать жесткие крылья большей длины, и слабый достигаемый им максимальный Су (что, в общем, характерно для таких профилей).

Новый профиль, названный автором ЕБ-380, имеет весьма важную технологическую особенность. На большей части образующая его нижняя полудужка совершенно ровная, что значительно упрощает создание несущих плоскостей с подобной профилировкой. Интересна дальнейшая история ЕБ-380. Сначала этот профиль был использован Бартовским на крыле планера с частично жесткой обшивкой, обтянутом материалом - аналогом нашей длинноволокнистой микалентной бумаги.

Результаты испытаний оказались, по крайней мере, ниже среднего. Естественно, Томаш после этого отказался от своего детища и строил модели, используя такие профили, как Фх60-126, Е-178, Е-193 и другие. Через некоторое время он все же вернулся к ЕБ-380 и рискнул еще раз испытать его на планере. Правда, теперь крыло имело цельнобальзовую обшивку с лакированной, отшлифованной и полированной поверхностью. Результаты полетов превзошли все ожидания.

По мнению Томаша, новый профиль был намного лучше, чем все ранее используемые им на моделях, и обладал к тому же очень широким диапазоном режимов. ЕБ-380 предлагался автором как весьма подходящий для планеров класса ФЗБ (в условиях восьмидесятых годов!). Рекомендовалось также при изготовлении крыльев строго соблюдать точность теоретических обводов и технологий, обеспечивающих высокое качество и гладкость поверхности.

Насколько было ясно из статьи в «Моделярже», поляра ЕБ-380 носила лишь ознакомительный характер и являлась плодом чисто умозрительных размышлений автора. Интересно отметить, что приведенные в чешском журнале изображения профиля не соответствовали помещенной тут же таблице координат, хотя и предназначались для прямого «перекалывания» без промежуточных построений (даны натурные профили с хордой 160, 180, 205, 230 и 250 мм). На изображениях отсутствовало поджатие верхней задней части полудужки, четко проявляющееся при точном построении.

Судя по всему, оно было спрямлено либо самим автором, либо художником, выполнявшим рисунки. Поэтому здесь правомерно вести речь только о модифицированном ЕБ-380, который в дальнейшем мы будем именовать ЕБ-380м. Длительное время о профиле Бартовского не было ничего слышно. И вдруг совсем недавно появился целый ряд успешных разработок метательных радиопланеров, крылья которых снабжены ЕБ-380м.

Спортсмены довольны этим профилем, хвалят его характеристики и особо - универсальность. Он позволяет летать как в режиме чистого тихоходного парения, так и в скоростном, без потери аэродинамических свойств. На кроссовых планерах ЕБ-380 не «прижился» даже в свое время (сейчас там совершенно иные профили), зато на «металках», которые завоевывают все большую популярность во всем мире, он взял свое.

Причем именно в нёрекомендованном автором исполнении - на крыльях с частичной и полной мягкой обшивкой, да еще и на весьма малых числах Рейнольдса. Последнее, возможно, оправдано довольно острой «турбулизирующей» передней частью профиля и дополнительной турбулизацией воздуха за счет сравнительно шероховатой бумажной обшивки. Если вы занимаетесь созданием «металок» или легких планеров-парителей, может, имеет смысл попробовать применить именно ЕБ-380 или ЕБ-380м? Подумайте...

Рис. 1. Точные обводы профиля ЕБ-380. (Хорда равна 100 мм.) Вверху показан профиль ЕБ-380м, приведенный на страницах чешского журнала «Моделярж» в качестве точных шаблонов профиля ЕБ-380.

Ламинарный профиль

профиль крыла, характеризующийся удалённым от носка положением точки перехода ламинарного течения в турбулентное при естественном обтекании, то есть без использования дополнительной энергии для затягивания перехода, как, например, при отсосе пограничного слоя, охлаждении поверхности (см. Ламинаризация пограничного слоя). Исследования в полёте состояния пограничного слоя на прямом крыле дозвукового самолёта (1938) показали наличие значительных участков ламинарного пограничного слоя. В СССР (И. В. Остославский, Г. П. Свищёв, К. К. Федяевский) и за рубежом были разработаны и применены на ряде самолётов Л. п., форма которых позволяла получать сдвинутое назад положение точки перехода ламинарного пограничного слоя в турбулентный и за счёт этого снижать сопротивление трения, а следовательно, и полное аэродинамическое сопротивление самолёта. Для этого форма профиля должна обеспечивать на его поверхности в области ожидаемого ламинарного слоя ускоренное течение с возможно большим градиентом скорости для повышения устойчивости ламинарного течения к возмущениям. Геометрически это достигается смешением назад положения максимальной толщины и вогнутости профиля (см. Кривизна профиля), увеличением относительной толщины профиля и некоторым уменьшением радиуса кривизны носка. При этом с целью предотвращения срыва потока нельзя допускать резкого снижения скорости в хвостовой, диффузорной, части профиля, что приводит к ограничениям на геометрию профиля (недопустимо, например, смещение максимальной толщины и вогнутости за середину профиля, а также чрезмерное увеличение его толщины и вогнутости).
Фактором, ограничивающим возможности естественной ламинаризации пограничного слоя, является стреловидность крыла по передней кромке. При угле стреловидности больше 20-25(°) наблюдается значительное уменьшение области ламинарного течения. Участки с естественной ламинаризацией могут наблюдаться на различных элементах самолёта (носок фюзеляжа, горизонтальные и вертикальные оперения и т. д.). Лётные исследования, проведённые при дозвуковых скоростях на самолётах с прямыми крыльями и крыльями с углом стреловидности менее 20(°), скомпонованными из Л. п., подтвердили наличие протяжённых ламинарных участков (до 30-50% хорды). При этом критические Рейнольдса числа, определенные по длине ламинарного участка, достигали Re* (≈) 10-12)*106. Проведённые в середине 80-х гг. в СССР (ЦАГИ) и за рубежом расчётные и экспериментальные исследования при больших числах Рейнольдса показали возможность получения протяжённых (вплоть до середины хорды) ламинарных участков при околозвуковом обтекании профилей с ускорением потока в местной сверхзвуков зоне. При этом Маха число полёта должно быть ограниченным, не допускающим возникновения интенсивных скачков уплотнения и заметного волнового сопротивления. Применение сверхкритических профилей с ускорением потока в местной сверхзвуковой зоне позволяет снизить сопротивление при повышенных дозвуковых скоростях полёта как за счёт естественной ламинаризации, так и за счёт малого, по сравнению с обычными профилями, волнового сопротивления.

  • - слоистый, плоский. Ламинарное течение жидкости – течение, при котором слои жидкости перемещаются параллельно, не перемешиваясь...

    Словарь микробиологии

  • - ЛАМИНАР – устройство для обеспечения асептических условий, необходимых для микробиол...

    Словарь микробиологии

  • - См. Мореля болезнь...

    Толковый словарь психиатрических терминов

  • - пограничный слой, в котором имеет место ламинарное течение...

    Энциклопедия техники

  • - "...: поток воздуха, в котором скорости воздуха вдоль параллельных линий тока одинаковы..." Источник: "АСЕПТИЧЕСКОЕ ПРОИЗВОДСТВО МЕДИЦИНСКОЙ ПРОДУКЦИИ. ЧАСТЬ 1. ОБЩИЕ ТРЕБОВАНИЯ...

    Официальная терминология

  • - АН ПРОФИЛЬ * en profil. Её величество <на картине> видна en profil или со стороны. Штелин 1 83. См. также Профиль...
  • - кр.ф. ламина/рен, ламина/рна, -рно,...

    Орфографический словарь русского языка

  • - в про́филь нареч. качеств.-обстоят. Сбоку...

    Толковый словарь Ефремовой

  • - ламина́рный прил. Слоистый, плоский...

    Толковый словарь Ефремовой

  • - в пр"...
  • - ламин"...

    Русский орфографический словарь

  • - ПВХ-пр"...

    Русский орфографический словарь

  • - ЛАМИНАРНЫЙ ая, ое. laminaire, нем. laminar <лат. lamina пластина, полоска. физ. Слоистый. Ламинарное течение жидкости. Ламинарность и, ж. Крысин 1998...

    Исторический словарь галлицизмов русского языка

  • - ламина́рный слоистый; плоский; л-ое течение жидкости - течение, при котором слои жидкости перемещаются параллельно, не перемешиваясь...

    Словарь иностранных слов русского языка

  • - ...

    Формы слова

  • - слоистый, плоский,...

    Словарь синонимов

"Ламинарный профиль" в книгах

Муравей в профиль и в фас

автора Халифман Иосиф Аронович

Муравей в профиль и в фас

Из книги Операция „Лесные муравьи" автора Халифман Иосиф Аронович

Муравей в профиль и в фас Здесь речь идёт о муравьиной семье, о муравейнике, который представляет собой ансамбль взаимно друг друга дополняющих особей физически независимых, но физиологически связанных. Это сглаженное органическое единство, развивающееся по своим

Профиль развития

Из книги Приключения другого мальчика. Аутизм и не только автора Заварзина-Мэмми Елизавета

Профиль развития В результате многолетних исследований еще в 1960-х годах в Институтах пришли к заключению, что в норме ребенок в своем развитии последовательно проходит определенные этапы в результате становления соответствующих отделов мозга. Порядок строго определен,

Вид в профиль

Из книги Мольер автора Мори Кристоф

Вид в профиль Возвращение Людовика XIV и инфанты Испанской после бракосочетания в Сен-Жан-де-Люсе в начале июня 1660 года было триумфальным, подготовленным Мазарини как апофеоз его внешней политики. Мария Тереза, дочь Филиппа IV и сестры Людовика XIII, то есть двоюродная

АНФАС И ПРОФИЛЬ

Из книги Я к вам пришел! автора Лисняк Борис Николаевич

АНФАС И ПРОФИЛЬ Мой арест в 1937 году и вся дальнейшая судьба в известной степени связаны с домом широко известного в то время фотохудожника М.С. Наппельбаума. Он жил с семьей на Петровке напротив Пассажа. Семья занимала на втором этаже квартиру из двух комнат, кухни и

Свой профиль

Из книги Изнанка экрана автора Марягин Леонид

Свой профиль На одном банкете по поводу смычки армии и искусства генерал, увидев Утесова, заявил:- А! Вот Утесов. Он сейчас нам что-нибудь расскажет!И получил ответ:- А! Вот генерал. Он сейчас нам что-нибудь

Профиль и анфас

Из книги Наследники Авиценны автора Смирнов Алексей Константинович

Профиль и анфас Доктор рассказывает:- Приезжаю - херня какая-то. Уже приехала РХБ (реанимационно-хирургическая бригада), пинают кого-то ногами... Я уехал.Второй доктор:- Ну, ведь ругают же нас за непрофильность. Мы же кардиологи, а кардиологических вызовов мало. А они -

Профан или Профиль?

Из книги На благо лошадей. Очерки иппические автора Урнов Дмитрий Михайлович

Профан или Профиль? Виталий Дорофеев, мастер спорта, остался третьим в первенстве СССР по троеборью; выездка, кросс и преодоление препятствий. Он ехал на чистопородном арабском жеребце Профане. Некоторое время мы с ним не виделись. Виктор писал диссертацию «Использование

Ваш профиль риска

Из книги Голый Форекс [Техника трейдинга без индикаторов с высокой вероятностью успеха] автора Некритин Алекс

Ваш профиль риска Битвы выигрываются еще до их начала. Сунь-Цзы (Sun-Tzu) Некоторые люди верят в судьбу. Найдутся такие, которые будут убеждать вас в том, что цифры итогового баланса вашего рабочего счета уже предопределены. Если это так, хотели бы вы поближе познакомиться с

Профиль ответственности

Из книги Менеджерами не рождаются. Непростые уроки достижения реальных результатов автора Свайтек Фрэнк

Профиль ответственности

Пвх-профиль

Из книги Правильный ремонт от пола до потолка: Справочник автора Онищенко Владимир

Пвх-профиль Этот пластиковый профиль на сегодняшний день – безусловный фаворит. Он практичен, надежен, замечательно смотрится как снаружи, так и изнутри, а по сравнению с другими материалами относительно дешев. Специалисты утверждают, что никакой особой разницы в

Профиль

Из книги Энциклопедический словарь (П) автора Брокгауз Ф. А.

Профиль Профиль (техн.) – очертание воображаемого или представленного графически вертикального разреза тела. В архитектуре П. показывает сочетание и чередование обломов и пропорциями своими характеризует стиль произведения. Древние греки впервые стали соразмерять

Профиль

Из книги Большая Советская Энциклопедия (ПР) автора БСЭ

НЕ ТОТ ПРОФИЛЬ

Из книги Сборник "Лазарь и Вера" автора Герт Юрий Михайлович

НЕ ТОТ ПРОФИЛЬ Была самая мерзкая пора московской осени: холодное стальное небо сплошь затянуто тучами, резкий ветер мечет по асфальту поземку, норовит забраться за шиворот, в рукава, обрывает последние листья с голых деревьев и на всем - на лицах прохожих, на домах,

36. Ламинарный и турбулентный режимы движения жидкости. Число Рейнольдса

Из книги Гидравлика автора Бабаев М А

36. Ламинарный и турбулентный режимы движения жидкости. Число Рейнольдса Как нетрудно было убедиться в вышеприведенном опыте, если фиксировать две скорости в прямом и обратном переходах движения в режимы ламинарное? турбулентное, то?1 ? ?2где?1 – скорость, при которой


Суперкритический профиль крыла

Суперкритический профиль крыла позволяет повысить эффективность самолёта в трансзвуковой области чисел М.

Из-за того, что воздушный поток не получает того же разгона над более плоской верхней поверхностью, по сравнению с обычным профилем, скачок уплотнения образуется на более высоком числе М. Образовавшийся скачок получается более слабым и маленьким. Это приводит к ослаблению градиента повышения давления на задней части профиля и повышает несущие свойства крыла.

Преимущества суперкритического профиля:

Благодаря ослаблению скачков уплотнения можно использовать меньший угол стреловидности крыла для самолёта с заданным крейсерским числом М. Таким образом ослабить проблемы, связанные со стреловидностью;

Большая относительная толщина профиля позволяет увеличить прочность и жёсткость крыла при неизменном весе конструкции. Также это позволяет создавать крылья большего удлинения, что уменьшает индуктивное сопротивление крыла;

Увеличивается внутренний объём крыла для размещения топлива и др.

Использование суперкритического профиля крыла позволяет:

Увеличить полезную загрузку. Если не изменять крейсерское число М, расход топлива уменьшится, что позволит взять больше полезной нагрузки, практически не увеличив лобовое сопротивление самолёта по сравнению с самолётом с традиционным профилем крыла.

Увеличить крейсерское число М. При сохранении той же полезной нагрузки, крейсерское число М может быть увеличено, практически без увеличения лобового сопротивления.

Недостатки суперкритического профиля

S - образная кривизна профиля хороша для больших чисел М, но далека от идеала для полёта на малых скоростях. С У МАХ уменьшается, требуя хорошо развитой механизации крыла для обеспечения приемлемых взлётно-посадочных характеристик;

Задняя кромка профиля имеет положительную кривизну и создаёт больше подъёмной силы, что приводит к возникновению большого пикирующего момента крыла. Для его компенсации требуется большее балансировочное отклонение горизонтального оперения, что создаёт дополнительное лобовое сопротивление.

Скоростная тряска, вызванная срывом за скачком уплотнения, может вызвать сильную вибрацию.

Аэродинамический нагрев

Воздух нагревается при сжатии и в результате трения. Воздух сжимается в зонах торможения перед самолётом и на скачках уплотнения и испытывает трение в пограничном слое.

При движении через воздух поверхность самолёта нагревается. Это происходит на всех скоростях, но нагрев становится существенным только на больших числах М.

На рисунке показано, как меняется температура поверхности самолёта при изменении числа М полёта. На М = 1,0 прирост температуры составляет около 40°С. При росте числа М более 2,0 температура повышается настолько, что в конструкции из традиционных алюминиевых сплавов начнутся необратимые изменения. Поэтому для самолётов с М ≥ 2,0 используются титановые сплавы или нержавеющая сталь.

Угол Маха

Если истинная скорость самолёта больше местной скорости звука, то источник звуковых волн давления движется быстрее, чем производимые им возмущения.

Рассмотрим объект, движущийся со скоростью V в направлении от А к D (см. рисунок ниже). Когда тело находилось в точке А, оно стало источником возмущения. Волна давления распространяется сферически с местной скоростью звука, но тело обогнало волну и по дороге также являлось источником звуковых волн давления. Распространение волн из точек А, В и С нарисовано соответствующими окружностями. Тело находится в точке D. Проведём касательную к этим окружностям DЕ. Данная касательная представляет собой границу распространения звуковых волн в момент нахождения тела в точке D.

Отрезок АЕ представляет местную скорость звука (а), АD – истинную скорость (V).

М = V / а (на рисунке М = 2,6).


Угол АDЕ называется углом Маха, обозначается µ.

sin µ = a / V = 1 / M.

Чем больше число М, тем угол Маха более острый. При М 1,0 µ = 90°.

Конус Маха

В трёхмерном пространстве звуковые волны распространяются сферически. Если их источник движется со сверхзвуковой скоростью, то они, накладываясь, образуют конус возмущений.

Угол полураствора конуса равен µ.

На рисунке изображён конус возмущений от объекта, движущегося с числом М 5,0.

Зона влияния

При движении со сверхзвуковой скоростью конус Маха представляет собой предел распространения звуковых возмущений от самолёта. Всё, находящееся снаружи конуса, находится вне влияния возмущений. Пространство внутри конуса называется зоной влияния самолёта.

У реального самолёта конус Маха начинается косым скачком уплотнения, угол которого несколько больше угла Маха. Это связано с тем, что первоначальная скорость распространения скачка уплотнения больше, чем местная скорость звука.

Головной скачек уплотнения

Рассмотрим сверхзвуковой поток, приближающийся к передней кромке крыла. Чтобы обойти вокруг кромки воздуху надо развернуться на большой угол. На сверхзвуковой скорости это невозможно на такой маленькой дистанции. Скорость потока резко затормозится до дозвуковой скорости и перед передней кромкой образуется прямой скачок уплотнения.


Позади скачка воздух заторможен и в состоянии обойти вокруг передней кромки. Вскоре после этого поток вновь разгоняется до сверхзвуковой скорости.

Скачок уплотнения перед самолётом называется головным скачком уплотнения. Он прямой в непосредственной близости с передней кромкой, далее от неё он переходит в косой скачок.

Как видно из рисунка на задней кромке крыла тоже образуется скачок уплотнения, но так как число М потока за крылом больше единицы, то этот скачек косой.

Волны разрежения

В предыдущем тексте было показано, как сверхзвуковой поток может обойти препятствие с торможением до дозвуковой скорости и образованием скачка уплотнения. При этом поток теряет энергию.

Рассмотрим, как сверхзвуковой поток огибает выпуклый угол.

Сначала рассмотрим дозвуковое обтекание.

При обтекании выпуклого угла скорость дозвукового потока резко уменьшается, а давление увеличивается. Неблагоприятный градиент давления приводит к отрыву пограничного слоя.

Сверхзвуковой поток может без отрыва обойти выпуклый угол за счёт расширения. При этом скорость потока увеличивается, а давление, плотность и температура понижаются. Поведение сверхзвукового потока, при пересечении волны разрежения, полностью противоположно прохождению скачка уплотнения.


На следующем рисунке показана серия волн разрежения при обтекании профиля сверхзвуковым потоком.

После прохода через головной скачек уплотнения, сжатый сверхзвуковой поток свободен для расширения и следует вдоль контура поверхности. Поскольку в потоке не возникает резких изменений параметров, волны расширения не похожи на скачки уплотнения.

При прохождении через волны расширения в потоке происходят следующие изменения:

Скорость и число М увеличиваются;

Направление потока изменяется для следования поверхности;

Статическое давление падает;

Плотность уменьшается;

Поскольку изменения не скачкообразные, то энергия потока не уменьшается.

Звуковой хлопок

Интенсивность скачков уплотнения уменьшается по мере удаления от летящего самолёта, но энергии звуковых волн давления может оказаться достаточно, чтобы создать громкий хлопок для наблюдателя на земле. Такие звуковые хлопки – неотъемлемый атрибут сверхзвуковых полётов. Звуковая волна движется вдоль земной поверхности с путевой скоростью пролетающего самолёта.

Методы улучшения управляемости в трансзвуковом диапазоне

Как уже было показано, эффективность традиционных рулевых поверхностей уменьшается в трансзвуковом диапазоне числе М. Некоторого улучшения можно добиться, используя генераторы вихрей.

Тем не менее, коренного улучшения управляемости можно добиться используя:

Цельноповоротный стабилизатор;

Интерцепторы-элероны.

Эти управляющие поверхности рассматривались в главе 11.

Зуда рулевых поверхностей можно избежать путём установки узких полосок вдоль задней кромки, использованием демпферов проводки управления или увеличения жесткости контура управления (усилия от поверхности замыкаются на силовом приводе).

Из-за возрастания и большого изменения шарнирных моментов на рулевых поверхностях в трансзвуковом диапазоне, система управления обеспечивается рулевыми приводами и механизмами искусственного создания усилий на органах управления.

Следующая таблица описывает основные свойства волновых форм сверхзвукового потока.


Косой скачек

Прямой скачек

Волны разрежения







Геометрия

Скачка


Плоскость скачка

Наклонена более, чем

На 90° от направления

Движения потока


Плоскость скачка

Перпендикулярна

Направлению

Движения потока


Изменение

Направления

Потока


В сторону на

Набегающий

Поток


Не меняется

В сторону от

Набегающего

Потока


Изменение

Скорости

Потока


Уменьшается, но

Остаётся

Сверхзвуковой


Уменьшается до

Дозвуковой


Увеличивается

Изменение

Давления и

Плотности


Увеличивается

Значительно

Увеличивается


Уменьшается

Изменение

Потока


Уменьшается

Значительно

Уменьшается


Не меняется

Изменение

Температуры


Увеличивается

Увеличивается

Уменьшается

Стреловидное крыло – итоги

Угол стреловидности – это угол между линией, построенной по 25% длин хорд крыла, и перпендикуляром к корневой нервюре крыла.

Цель создания стреловидности – увеличить М КРИТ. Все остальные свойства стреловидного крыла – побочные и чаще всего негативные. Но положительный эффект увеличения М КРИТ перевешивает все недостатки.

Побочные свойства стреловидного крыла


  1. Усиливается тенденция к срыву потока на больших углах атаки первоначально в районе законцовок крыла. Для борьбы с этим используются аэродинамические гребни на верхней и нижней поверхности крыла и запилы по передней кромке (уменьшается перетекание потока от корня крыла к законцовкам).

Концевой срыв потока может вызывать срывной подхват по углу атаки – главный недостаток стреловидного крыла.

В свою очередь срывной подхват может привести к глубокому сваливанию (superstall).

Самолёты, которые демонстрируют тенденцию к подхвату на больших углах атаки, должны быть оборудованы устройством, активно предотвращающим выход на режим сваливания (толкатель штурвала).

При пилотировании самолёта на углах атаки близких к сваливанию, управление по крену следует выполнять отклонениями элеронов с координированными отклонениями руля направления. Управление одним рулём направления может давать чрезмерные кренящие моменты. (При назначении скорости V SR демонстрируется адекватное поперечное управление при использовании элеронов).


  1. По сравнению с прямым крылом, та же самая секция крыла стреловидного крыла аэродинамически менее эффективна.

На том же самом угле атаки С У будет меньше.

С У МАКС будет меньше и будет достигаться на большем угле атаки.

Градиент наклона кривой C Y = f (α) будет меньше.

Стреловидное крыло требует установки сложной механизации крыла, предкрылков и закрылков, чтобы добиться приемлемых взлётно-посадочных характеристик.

(Менее эффективный вид предкрылков устанавливают в корневой части стреловидного крыла для обеспечения первоначального срыва в корне крыла)

Киль и стабилизатор на самолётах со стреловидным крылом также делают стреловидными, чтобы не допустить развития срыва на оперении раньше, чем на крыле. (При увеличении угла стреловидности растёт максимально-допустимый угол атаки).

По сравнению с прямым крылом, стреловидное крыло достигает требуемого коэффициента подъёмной силы на большем угле атаки, что особенно заметно при полётах на малых скоростях.

Более пологий наклон зависимости C Y = f (α) играет положительную роль при полётах в условиях турбулентности – самолёт становится менее чувствительным к кратковременным изменениям угла атаки; меньшее изменение перегрузки возникает при попадании в один и тот же вертикальный порыв.


  1. Стреловидное крыло незначительно увеличивает путевую устойчивость.

  1. Стреловидное крыло значительно (как правило, чрезмерно) увеличивает поперечную устойчивость.

  1. При полете на числе М > М КРИТ, стреловидное крыло создаёт пикирующий момент (явление затягивания в пикирование), для противодействия которому на самолёте устанавливается система Mach trim.

  1. Ось вращения элеронов на стреловидном крыле не перпендикулярна набегающему потоку, что уменьшает эффективность управления самолётом.

za / wikipedia.org

Французская компания Onera совместно с итальянской Leonardo провела испытания гладкого крыла, оптимизированного для ламинарного потока. Как пишет Aviation Week , испытания состоялись в трансзвуковой аэродинамической трубе S1MA французской компании. В настоящее время специалисты анализируют данные, полученные во время испытаний, однако, согласно предварительным результатам, гладкое крыло показало несколько меньшее лобовое сопротивление по сравнению с обычным крылом самолета.

Объемы авиационных перевозок увеличиваются с каждым годом. Для того, чтобы удовлетворить спрос, снизив при этом стоимость авиаперевозок и не повлияв на доходы авиакомпаний, разработчики постоянно исследуют новые технологии улучшения самолетов. В частности, активные работы ведутся в области снижения потребления топлива самолетом в полете. Эту задачу можно решить несколькими способами. Например, снизить потребление топлива на несколько процентов можно улучшив конструкцию двигателей.

Еще одним способом уменьшить потребление топлива является снижение лобового сопротивления самолета. Этого можно добиться пересмотрев конструкцию самолетов, используя новые легкие материалы и покрытия. Согласно планам разработчиков, новое ламинарное крыло должно отличаться существенно меньшим лобовым сопротивлением по сравнению со стандартным крылом самолета. Такое крыло должно иметь гладкую поверхность и невысокий профиль, чтобы обеспечить ламинарный воздушный поток на как можно большей площади.


Ламинарное крыло в аэродинамической трубе (слева) и тепловизионное изображение ламинарного потока на его верхней плоскости

В аэродинамической трубе испытания проходили испытания левой консоли ламинарного крыла самолета длиной 5,2 метра. Продувочные испытания проводились на скорости воздушного потока 0,74 числа Маха (913,7 километра в час). Для изучения обтекающего крыло воздушного потока использовались высокоточные тепловизоры, замерявшие температуру на крыле в режиме реального времени. В результате выяснилось, что на верхней плоскости крыла площадь покрытия ламинарным потоком составила 70 процентов, а на нижней 30 процентов.

Для современного обычного самолетного крыла площадь покрытия ламинарным потоком в зависимости от конструкции составляет от 30 до 50 процентов для верхней плоскости и до 30 процентов - для нижней. На части крыла обязательно должно присутствовать турбулентное течение, повышающее его несущую способность. Для этого на современных самолетах на верхней плоскости крыла устанавливаются небольшие пластинки - завихрители потока, разрушающие ламинарный поток.

Тем не менее, считается, что в гражданской авиации, самолеты которых как правило не выполняют полетов на критических углах атаки, ламинарное удлиненное крыло может быть успешно использовано. При стабильном полете с без резких изменений углов атаки гладкое крыло может существенно снизить лобовое сопротивление, а значит потребление топлива в полете. Когда именно новое крыло может появиться на серийных самолетах, пока неизвестно.

Сегодня активными работами в области исследования гладкого крыла, оптимизированного для ламинарного обтекания, шведская компания Saab и британская GKN. Первая исследует композитное крыло, в котором передняя кромка и верхняя плоскость выполнены единой деталью, с пристыковкой остальных элементов и механизации с минимальными зазорами. В свою очередь GKN исследует обычное крыло, элементы которого плотнее обычного подогнаны друг к другу. Испытания обоих крыльев начнутся в текущем году.

Между тем, в феврале прошлого года GKN занялась исследованиями в области красок, которые позволят снизить лобовое сопротивление самолетов. Благодаря новым покрытиям разработчики рассчитывают снизить лобовое сопротивление на 25 процентов в крейсерском полете. Свои свойства новые краски должны будут сохранять на протяжении пяти лет, такой срок является стандартным требованием для внешних покрытий самолетов.

При нанесении на корпус самолета новые краски должны будут скрывать дефекты поверхности, обеспечивая тем самым ламинарное обтекание воздухом аэродинамических поверхностей, в первую очередь передних кромок, нередко имеющих неоднородную поверхность.

Василий Сычёв