Колебательный контур. Формула Томсона. SA Колебательный контур Половина периода полного колебания колебательный контур

Электрическая цепь, состоящая из катушки индуктивности и конденсатора (см. рисунок), называется колебательным контуром. В этой цепи могут происходить своеобразные электрические колебания. Пусть, например, в начальный момент времени мы заряжаем пластины конденсатора положительным и отрицательным зарядами, а затем разрешим зарядам двигаться. Если бы катушка отсутствовала, конденсатор начал бы разряжаться, в цепи на короткое время возник электрический ток, и заряды пропали бы. Здесь же происходит следующее. Сначала благодаря самоиндукции катушка препятствует увеличению тока, а затем, когда ток начинает убывать, препятствует его уменьшению, т.е. поддерживает ток. В результате ЭДС самоиндукции заряжает конденсатор с обратной полярностью: та пластина, которая изначально была заряжена положительно, приобретает отрицательный заряд, вторая - положительный. Если при этом не происходит потерь электрической энергии (в случае малого сопротивления элементов контура), то величина этих зарядов будет такая же, как величина первоначальных зарядов пластин конденсатора. В дальнейшем движение процесс перемещения зарядов будет повторяться. Таким образом, движение зарядов в контуре представляет собой колебательный процесс.

Для решения задач ЕГЭ, посвященных электромагнитным колебаниям, нужно запомнить ряд фактов и формул, касающихся колебательного контура. Во-первых, нужно знать формулу для периода колебаний в контуре. Во-вторых, уметь применять к колебательному контуру закон сохранения энергии. И, наконец (хотя такие задачи встречаются редко), уметь использовать зависимости силы тока через катушку и напряжения на конденсаторе от времени

Период электромагнитных колебаний в колебательном контуре определяется соотношением:

где и - заряд на конденсаторе и сила тока в катушке в этот момент времени, и - емкость конденсатора и индуктивность катушки. Если электрическое сопротивление элементов контура мало, то электрическая энергия контура (24.2) остается практически неизменной, несмотря на то, что заряд конденсатора и ток в катушке изменяются с течением времени. Из формулы (24.4) следует, что при электрических колебаниях в контуре происходят превращения энергии: в те моменты времени, когда ток в катушке равен нулю, вся энергия контура сводится к энергии конденсатора. В те моменты времени, когда равен нулю заряд конденсатора, энергия контура сводится к энергии магнитного поля в катушке. Очевидно, в эти моменты времени заряд конденсатора или ток в катушке достигают своих максимальных (амплитудных) значений.

При электромагнитных колебаниях в контуре заряд конденсатора изменяется с течением времени по гармоническому закону:

стандартной для любых гармонических колебаний. Поскольку сила тока в катушке представляет собой производную заряда конденсатора по времени, из формулы (24.4) можно найти зависимость силы тока в катушке от времени

В ЕГЭ по физике часто предлагаются задачи на электромагнитные волны. Необходимый для решения этих задач минимум знаний включает в себя понимание основных свойств электромагнитной волны и знание шкалы электромагнитных волн. Сформулируем кратко эти факты и принципы.

Согласно законам электромагнитного поля переменное магнитное поле порождает поле электрическое, переменное электрическое поле порождает поле магнитное. Поэтому если одно из полей (например, электрическое) начнет меняться, возникнет второе поле (магнитное), которое затем снова порождает первое (электрическое), затем снова второе (магнитное) и т.д. Процесс взаимного превращения друг в друга электрического и магнитного полей, который может распространяться в пространстве, называется электромагнитной волной. Опыт показывает, что направления, в которых колеблются векторы напряженности электрического и индукции магнитного поля в электромагнитной волне перпендикулярны направлению ее распространения. Это означает, что электромагнитные волны являются поперечными. В теории электромагнитного поля Максвелла доказывается, что электромагнитная волна создается (излучается) электрическими зарядами при их движении с ускорением. В частности, источником электромагнитной волны является колебательный контур.

Длина электромагнитной волны , ее частота (или период ) и скорость распространения связаны соотношением, которое справедливо для любой волны (см. также формулу (11.6)):

Электромагнитные волны в вакууме распространяются со скоростью = 3 10 8 м/с, в среде скорость электромагнитных волн меньше, чем в вакууме, причем эта скорость зависит от частоты волны. Такое явление называется дисперсией волн. Электромагнитной волне присущи все свойства волн, распространяющихся в упругих средах: интерференция, дифракция, для нее справедлив принцип Гюйгенса. Единственное, что отличает электромагнитную волну, это то, что для ее распространения не нужна среда - электромагнитная волна может распространяться и в вакууме.

В природе наблюдаются электромагнитные волны с сильно отличающимися друг от друга частотами, и обладающие благодаря этому существенно различными свойствами (несмотря на одинаковую физическую природу). Классификация свойств электромагнитных волн в зависимости от их частоты (или длины волны) называется шкалой электромагнитных волн. Дадим краткий обзор этой шкалы.

Электромагнитные волны с частотой меньшей 10 5 Гц (т.е. с длиной волны, большей нескольких километров) называются низкочастотными электромагнитными волнами. Излучают волны такого диапазона большинство бытовых электрических приборов.

Волны с частотой от 10 5 до 10 12 Гц называются радиоволнами. Этим волнам отвечают длины волн в вакууме от нескольких километров до нескольких миллиметров. Эти волны применяются для радиосвязи, телевидения, радиолокации, сотовых телефонов. Источниками излучения таких волн являются заряженные частицы, движущиеся в электромагнитных полях. Радиоволны излучаются также свободными электронами металла, которые совершают колебания в колебательном контуре.

Область шкалы электромагнитных волн с частотами, лежащими в интервале 10 12 - 4,3 10 14 Гц (и длинами волн от нескольких миллиметров до 760 нм) называется инфракрасным излучением (или инфракрасными лучами). Источником такого излучения служат молекулы нагретого вещества. Человек излучает инфракрасные волны с длиной волны 5 - 10 мкм.

Электромагнитное излучение в интервале частот 4,3 10 14 - 7,7 10 14 Гц (или длин волн 760 - 390 нм) воспринимается человеческим глазом как свет и называется видимым светом. Волны различных частот внутри этого диапазона воспринимаются глазом, как имеющие различный цвет. Волна с самой маленькой частотой из видимого диапазона 4,3 10 14 воспринимается как красная, с самой большой частотой внутри видимого диапазона 7,7 10 14 Гц - как фиолетовая. Видимый свет излучается при переходе электронов в атомах, молекулами твердых тел, нагретых до 1000 °С и более.

Волны с частотой 7,7 10 14 - 10 17 Гц (длина волны от 390 до 1 нм) принято называть ультрафиолетовым излучением. Ультрафиолетовое излучение имеет выраженное биологическое действие: оно способно убивать ряд микроорганизмов, способно вызвать усиление пигментации человеческой кожи (загар), при избыточном облучении в отдельных случаях может способствовать развитию онкологических заболеваний (рак кожи). Ультрафиолетовые лучи содержатся в излучении Солнца, в лабораториях создаются специальными газоразрядными (кварцевыми) лампами.

За областью ультрафиолетового излучения лежит область рентгеновских лучей (частота 10 17 - 10 19 Гц, длина волны от 1 до 0,01 нм). Эти волны излучаются при торможении в веществе заряженных частиц, разогнанных напряжением 1000 В и более. Обладают способностью проходить сквозь толстые слои вещества, непрозрачного для видимого света или ультрафиолетового излучения. Благодаря этому свойству рентгеновские лучи широко используются в медицине для диагностики переломов костей и ряда заболеваний. Рентгеновские лучи оказывают губительное действие на биологические ткани. Благодаря этому свойству их можно использовать для лечения онкологических заболеваний, хотя при избыточном облучении они смертельно опасны для человека, вызывая целый ряд нарушений в организме. Из-за очень малой длины волны волновые свойства рентгеновского излучения (интерференцию и дифракцию) можно обнаружить только на структурах, сравнимых с размерами атомов.

Гамма-излучением (-излучением) называют электромагнитные волны с частотой, большей, чем 10 20 Гц (или длиной волны, меньшей 0,01 нм). Возникают такие волны в ядерных процессах. Особенностью -излучения является его ярко выраженные корпускулярные свойства (т.е. это излучение ведет себя как поток частиц). Поэтому о -излучении часто говорят как о потоке -частиц.

В задаче 24.1.1 для установления соответствия между единицами измерений используем формулу (24.1), из которой следует, что период колебаний в контуре с конденсатором емкостью 1 Ф и индуктивностью 1 Гн равен секунд (ответ 1 ).

Из графика, данного в задаче 24.1.2 , заключаем, что период электромагнитных колебаний в контуре составляет 4 мс (ответ 3 ).

По формуле (24.1) находим период колебаний в контуре, данном в задаче 24.1.3 :
(ответ 4 ). Отметим, что согласно шкале электромагнитных волн такой контур излучает волны длинноволнового радиодиапазона.

Периодом колебания называется время одного полного колебания. Это значит, что если в начальный момент времени конденсатор заряжен максимальным зарядом (задача 24.1.4 ), то через половину периода конденсатор будет также заряжен максимальным зарядом, но с обратной полярностью (та пластина, которая изначально была заряжена положительно, будет заряжена отрицательно). А максимальный в контуре ток будет достигаться между этими двумя моментами, т.е. через четверть периода (ответ 2 ).

Если увеличить индуктивность катушки в четыре раза (задача 24.1.5 ), то согласно формуле (24.1) период колебаний в контуре возрастет в два раза, а частота уменьшится в два раза (ответ 2 ).

Согласно формуле (24.1) при увеличении емкости конденсатора в четыре раза (задача 24.1.6 ) период колебаний в контуре увеличивается в два раза (ответ 1 ).

При замыкании ключа (задача 24.1.7 ) в контуре вместо одного конденсатора будут работать два таких же конденсатора, соединенных параллельно (см. рисунок). А поскольку при параллельном соединении конденсаторов их емкости складываются, то замыкание ключа приводит к двукратному увеличению емкости контура. Поэтому из формулы (24.1) заключаем, что период колебаний увеличивается в раз (ответ 3 ).

Пусть заряд на конденсаторе совершает колебания с циклической частотой (задача 24.1.8 ). Тогда согласно формулам (24.3)-(24.5) с той же частотой будет совершать колебаний ток в катушке. Это значит, что зависимость тока от времени может быть представлена в виде . Отсюда находим зависимость энергии магнитного поля катушки от времени

Из этой формулы следует, что энергия магнитного поля в катушке совершает колебания с удвоенной частотой, и, значит, с периодом, вдвое меньшим периода колебания заряда и тока (ответ 1 ).

В задаче 24.1.9 используем закон сохранения энергии для колебательного контура. Из формулы (24.2) следует, что для амплитудных значений напряжения на конденсаторе и тока в катушке справедливо соотношение

где и - амплитудные значения заряда конденсатора и тока в катушке. Из этой формулы с использованием соотношения (24.1) для периода колебаний в контуре находим амплитудное значение тока

ответ 3 .

Радиоволны - электромагнитные волны с определенными частотами. Поэтому скорость их распространения в вакууме равна скорости распространения любых электромагнитных волн, и в частности, рентгеновских. Эта скорость - скорость света (задача 24.2.1 - ответ 1 ).

Как указывалось ранее, заряженные частицы излучают электромагнитные волны при движении с ускорением. Поэтому волна не излучается только при равномерном и прямолинейном движении (задача 24.2.2 - ответ 1 ).

Электромагнитная волна - это особым образом изменяющиеся в пространстве и времени и поддерживающие друг друга электрическое и магнитное поля. Поэтому правильный ответ в задаче 24.2.3 - 2 .

Из данного в условии задачи 24.2.4 графика следует, что период данной волны - = 4 мкс. Поэтому из формулы (24.6) получаем м (ответ 1 ).

В задаче 24.2.5 по формуле (24.6) находим

(ответ 4 ).

С антенной приемника электромагнитных волн связан колебательный контур. Электрическое поле волны действует на свободные электроны в контуре и заставляет их совершать колебания. Если частота волны совпадает с собственной частотой электромагнитных колебаний, амплитуда колебаний в контуре возрастает (резонанс) и может быть зарегистрирована. Поэтому для приема электромагнитной волны частота собственных колебаний в контуре должна быть близка к частоте этой волны (контур должен быть настроен на частоту волны). Поэтому если контур нужно перенастроить с волны длиной 100 м на волну длиной 25 м (задача 24.2.6 ), собственная частота электромагнитных колебаний в контуре должна быть увеличена в 4 раза. Для этого согласно формулам (24.1), (24.4) емкость конденсатора следует уменьшить в 16 раз (ответ 4 ).

Согласно шкале электромагнитных волн (см. введение к настоящей главе), максимальной длиной из перечисленных в условии задачи 24.2.7 электромагнитных волн обладает излучение антенны радиопередатчика (ответ 4 ).

Среди перечисленных в задаче 24.2.8 электромагнитных волн максимальной частотой обладает рентгеновское излучение (ответ 2 ).

Электромагнитная волна является поперечной. Это значит, что векторы напряженности электрического поля и индукции магнитного поля в волне в любой момент времени направлены перпендикулярно направлению распространения волны. Поэтому при распространении волны в направлении оси (задача 24.2.9 ), вектор напряженности электрического поля направлен перпендикулярно этой оси. Следовательно, обязательно равна нулю его проекция на ось = 0 (ответ 3 ).

Скорость распространения электромагнитной волны - есть индивидуальная характеристика каждой среды. Поэтому при переходе электромагнитной волны из одной среду в другую (или из вакуума в среду) скорость электромагнитной волны изменяется. А что можно сказать о двух других параметрах волны, входящих в формулу (24.6), - длине волны и частоте . Будут ли они изменяться при переходе волны из одной среды в другую (задача 24.2.10 )? Очевидно, что частота волны не изменяется при переходе из одной среды в другую. Действительно, волна это колебательный процесс, в котором переменное электромагнитное поле в одной среде создает и поддерживает поле в другой среде благодаря именно этим изменениям. Поэтому периоды этих периодических процессов (а значит и частоты) в одной и другой среде должны совпадать (ответ 3 ). А поскольку скорость волны в разных средах разная, то из проведенных рассуждений и формулы (24.6) следует, что длина волны при ее переходе из одной среды в другую - изменяется.

Tomsono virpesių formulė statusas T sritis fizika atitikmenys: angl. Thomson’s formula vok. Thomsonsche Schwingungsformel, f rus. формула Томсона, f pranc. formule de Thomson, f … Fizikos terminų žodynas

Зависимость дифференциального сечения рассеяния от угла рассеяния для различных значений энергий фотона Формула Клейна Нишины формула, описывающая … Википедия

- [по вмени англ. физика У. Томсона (W. Thomson; 1824 1907)] ф ла, выражающая зависимость периода Т незатухающих собственных колебаний в колебательном контуре от его параметров индуктивности L и ёмкости С: Т = 2ПИ корень из LC (здесь L в Гн, С в Ф … Большой энциклопедический политехнический словарь

Эффект Томсона одно из термоэлектрических явлений, заключающееся в том, что в однородном неравномерно нагретом проводнике с постоянным током, дополнительно к теплоте, выделяемой в соответствии с законом Джоуля Ленца, в объёме… … Википедия

Выражение для дифференц. сечения ds рассеяния фотона на электроне (см. Комптона эффект). В лаб. системе координат где частоты падающего и рассеянного фотона, элемент телесного угла для рассеянного фотона, угол рассеяния, параметр r0 = e … Физическая энциклопедия

- (Thomson) (в 1892 за научные заслуги получил титул барона Кельвина, Kelvin) (1824 1907), английский физик, член (1851) и президент (1890 1895) Лондонского королевского общества, иностранный член корреспондент (1877) и иностранный почётный член… … Энциклопедический словарь

- (Thomson, William), лорд Кельвин (1824 1907), английский физик, один из основоположников термодинамики. Родился в Белфасте (Ирландия) 26 июня 1824. Лекции отца, профессора математики университета Глазго, начал посещать уже в 8 лет, а в 10 стал… … Энциклопедия Кольера

I Томсон Александр Иванович , русский советский языковед, член корреспондент Петербургской АН (1910). Окончил Петербургский университет (1882). Профессор Новороссийского университета …

Томсон (Thomson), лорд Кельвин (Kelvin) Уильям (26.6.1824, Белфаст, ‒ 17.12.1907, Ларгс, близ Глазго; похоронен в Лондоне), английский физик, один из основателей термодинамики и кинетической теории газов, член Лондонского королевского общества (с … Большая советская энциклопедия

- (Thomson, Joseph John) (1856 1940), английский физик, удостоенный Нобелевской премии по физике 1906 за работы, которые привели к открытию электрона. Родился 18 декабря 1856 в пригороде Манчестера Читем Хилле. В возрасте 14 лет поступил в Оуэнс… … Энциклопедия Кольера

  • Электромагнитные колебания – это периодические изменения со временем электрических и магнитных величин в электрической цепи.
  • Свободными называются такие колебания , которые возникают в замкнутой системе вследствие отклонения этой системы от состояния устойчивого равновесия.

При колебаниях происходит непрерывный процесс превращения энергии системы из одной формы в другую. В случае колебаний электромагнитного поля обмен может идти только между электрической и магнитной составляющей этого поля. Простейшей системой, где может происходить этот процесс, является колебательный контур .

  • Идеальный колебательный контур (LC-контур ) - электрическая цепь, состоящая из катушки индуктивностью L и конденсатора емкостью C .

В отличие от реального колебательного контура, который обладает электрическим сопротивлением R , электрическое сопротивление идеального контура всегда равна нулю. Следовательно, идеальный колебательный контур является упрощенной моделью реального контура.

На рисунке 1 изображена схема идеального колебательного контура.

Энергии контура

Полная энергия колебательного контура

\(W=W_{e} + W_{m}, \; \; \; W_{e} =\dfrac{C\cdot u^{2} }{2} = \dfrac{q^{2} }{2C}, \; \; \; W_{m} =\dfrac{L\cdot i^{2}}{2},\)

Где W e - энергия электрического поля колебательного контура в данный момент времени, С - электроемкость конденсатора, u - значение напряжения на конденсаторе в данный момент времени, q - значение заряда конденсатора в данный момент времени, W m - энергия магнитного поля колебательного контура в данный момент времени, L - индуктивность катушки, i -значение силы тока в катушке в данный момент времени.

Процессы в колебательном контуре

Рассмотрим процессы, которые возникают в колебательном контуре.

Для выведения контура из положения равновесия зарядим конденсатор так, что на его обкладках будет заряд Q m (рис. 2, положение 1 ). С учетом уравнения \(U_{m}=\dfrac{Q_{m}}{C}\) находим значение напряжения на конденсаторе. Тока в цепи в этом момент времени нет, т.е. i = 0.

После замыкания ключа под действием электрического поля конденсатора в цепи появится электрический ток, сила тока i которого будет увеличиваться с течением времени. Конденсатор в это время начнет разряжаться, т.к. электроны, создающие ток, (Напоминаю, что за направление тока принято направление движения положительных зарядов) уходят с отрицательной обкладки конденсатора и приходят на положительную (см. рис. 2, положение 2 ). Вместе с зарядом q будет уменьшаться и напряжение u \(\left(u = \dfrac{q}{C} \right).\) При увеличении силы тока через катушку возникнет ЭДС самоиндукции, препятствующая изменению силы тока. Вследствие этого, сила тока в колебательном контуре будет возрастать от нуля до некоторого максимального значения не мгновенно, а в течение некоторого промежутка времени, определяемого индуктивностью катушки.

Заряд конденсатора q уменьшается и в некоторый момент времени становится равным нулю (q = 0, u = 0), сила тока в катушке достигнет некоторого значения I m (см. рис. 2, положение 3 ).

Без электрического поля конденсатора (и сопротивления) электроны, создающие ток, продолжают свое движение по инерции. При этом электроны, приходящие на нейтральную обкладку конденсатора, сообщают ей отрицательный заряд, электроны, уходящие с нейтральной обкладки, сообщают ей положительный заряд. На конденсаторе начинает появляться заряд q (и напряжение u ), но противоположного знака, т.е. конденсатор перезаряжается. Теперь новое электрическое поле конденсатора препятствует движению электронов, поэтому сила тока i начинает убывать (см. рис. 2, положение 4 ). Опять же это происходит не мгновенно, поскольку теперь ЭДС самоиндукции стремится скомпенсировать уменьшение тока и «поддерживает» его. А значение силы тока I m (в положении 3 ) оказывается максимальным значением силы тока в контуре.

И снова под действием электрического поля конденсатора в цепи появится электрический ток, но направленный в противоположную сторону, сила тока i которого будет увеличиваться с течением времени. А конденсатор в это время будет разряжаться (см. рис. 2, положение 6 )до нуля (см. рис. 2, положение 7 ). И так далее.

Так как заряд на конденсаторе q (и напряжение u ) определяет его энергию электрического поля W e \(\left(W_{e}=\dfrac{q^{2}}{2C}=\dfrac{C \cdot u^{2}}{2} \right),\) а сила тока в катушке i - энергию магнитного поля Wm \(\left(W_{m}=\dfrac{L \cdot i^{2}}{2} \right),\) то вместе с изменениями заряда, напряжения и силы тока, будут изменяться и энергии.

Обозначения в таблице:

\(W_{e\, \max } =\dfrac{Q_{m}^{2} }{2C} =\dfrac{C\cdot U_{m}^{2} }{2}, \; \; \; W_{e\, 2} =\dfrac{q_{2}^{2} }{2C} =\dfrac{C\cdot u_{2}^{2} }{2}, \; \; \; W_{e\, 4} =\dfrac{q_{4}^{2} }{2C} =\dfrac{C\cdot u_{4}^{2} }{2}, \; \; \; W_{e\, 6} =\dfrac{q_{6}^{2} }{2C} =\dfrac{C\cdot u_{6}^{2} }{2},\)

\(W_{m\; \max } =\dfrac{L\cdot I_{m}^{2} }{2}, \; \; \; W_{m2} =\dfrac{L\cdot i_{2}^{2} }{2}, \; \; \; W_{m4} =\dfrac{L\cdot i_{4}^{2} }{2}, \; \; \; W_{m6} =\dfrac{L\cdot i_{6}^{2} }{2}.\)

Полная энергия идеального колебательного контура сохраняется с течением времени, поскольку в нем потерь энергии (нет сопротивления). Тогда

\(W=W_{e\, \max } = W_{m\, \max } = W_{e2} + W_{m2} = W_{e4} +W_{m4} = ...\)

Таким образом, в идеальном LC -контуре будут происходить периодические изменения значений силы тока i , заряда q и напряжения u , причем полная энергия контура при этом будет оставаться постоянной. В этом случае говорят, что в контуре возникли свободные электромагнитные колебания .

  • Свободные электромагнитные колебания в контуре - это периодические изменения заряда на обкладках конденсатора, силы тока и напряжения в контуре, происходящие без потребления энергии от внешних источников.

Таким образом, возникновение свободных электромагнитных колебаний в контуре обусловлено перезарядкой конденсатора и возникновением ЭДС самоиндукции в катушке, которая «обеспечивает» эту перезарядку. Заметим, что заряд конденсатора q и сила тока в катушке i достигают своих максимальных значений Q m и I m в различные моменты времени.

Свободные электромагнитные колебания в контуре происходят по гармоническому закону:

\(q=Q_{m} \cdot \cos \left(\omega \cdot t+\varphi _{1} \right), \; \; \; u=U_{m} \cdot \cos \left(\omega \cdot t+\varphi _{1} \right), \; \; \; i=I_{m} \cdot \cos \left(\omega \cdot t+\varphi _{2} \right).\)

Наименьший промежуток времени, в течение которого LC -контур возвращается в исходное состояние (к начальному значению заряда данной обкладки), называется периодом свободных (собственных) электромагнитных колебаний в контуре.

Период свободных электромагнитных колебаний в LC -контуре определяется по формуле Томсона:

\(T=2\pi \cdot \sqrt{L\cdot C}, \;\;\; \omega =\dfrac{1}{\sqrt{L\cdot C}}.\)

Сточки зрения механической аналогии, идеальному колебательному контурусоответствует пружинный маятник без трения, а реальному - с трением. Вследствиедействия сил трения колебания пружинного маятника затухают с течением времени.

*Вывод формулы Томсона

Поскольку полная энергия идеального LC -контура, равная сумме энергий электростатического поля конденсатора и магнитного поля катушки, сохраняется, то в любой момент времени справедливо равенство

\(W=\dfrac{Q_{m}^{2} }{2C} =\dfrac{L\cdot I_{m}^{2} }{2} =\dfrac{q^{2} }{2C} +\dfrac{L\cdot i^{2} }{2} ={\rm const}.\)

Получим уравнение колебаний в LC -контуре, используя закон сохранения энергии. Продифференцировав выражение для его полной энергии по времени, с учетом того, что

\(W"=0, \;\;\; q"=i, \;\;\; i"=q"",\)

получаем уравнение, описывающее свободные колебания в идеальном контуре:

\(\left(\dfrac{q^{2} }{2C} +\dfrac{L\cdot i^{2} }{2} \right)^{{"} } =\dfrac{q}{C} \cdot q"+L\cdot i\cdot i" = \dfrac{q}{C} \cdot q"+L\cdot q"\cdot q""=0,\)

\(\dfrac{q}{C} +L\cdot q""=0,\; \; \; \; q""+\dfrac{1}{L\cdot C} \cdot q=0.\)

Переписав его в виде:

\(q""+\omega ^{2} \cdot q=0,\)

замечаем, что это - уравнение гармонических колебаний с циклической частотой

\(\omega =\dfrac{1}{\sqrt{L\cdot C} }.\)

Соответственно период рассматриваемых колебаний

\(T=\dfrac{2\pi }{\omega } =2\pi \cdot \sqrt{L\cdot C}.\)

Литература

  1. Жилко, В.В. Физика: учеб. пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, Л.Г. Маркович. - Минск: Нар. Асвета, 2009. - С. 39-43.
Формула Томсона названа в честь английского физика Уильяма Томсона , который вывел её в 1853 году , и связывает период собственных электрических или электромагнитных колебаний в контуре с его ёмкостью и индуктивностью .

Формула Томсона выглядит следующим образом :

T = 2\pi \sqrt{LC}

См. также

Напишите отзыв о статье "Формула Томсона"

Примечания

Отрывок, характеризующий Формула Томсона

– Да, да, знаю. Пойдем, пойдем… – сказал Пьер и вошел в дом. Высокий плешивый старый человек в халате, с красным носом, в калошах на босу ногу, стоял в передней; увидав Пьера, он сердито пробормотал что то и ушел в коридор.
– Большого ума были, а теперь, как изволите видеть, ослабели, – сказал Герасим. – В кабинет угодно? – Пьер кивнул головой. – Кабинет как был запечатан, так и остался. Софья Даниловна приказывали, ежели от вас придут, то отпустить книги.
Пьер вошел в тот самый мрачный кабинет, в который он еще при жизни благодетеля входил с таким трепетом. Кабинет этот, теперь запыленный и нетронутый со времени кончины Иосифа Алексеевича, был еще мрачнее.
Герасим открыл один ставень и на цыпочках вышел из комнаты. Пьер обошел кабинет, подошел к шкафу, в котором лежали рукописи, и достал одну из важнейших когда то святынь ордена. Это были подлинные шотландские акты с примечаниями и объяснениями благодетеля. Он сел за письменный запыленный стол и положил перед собой рукописи, раскрывал, закрывал их и, наконец, отодвинув их от себя, облокотившись головой на руки, задумался.

Если сравнить рис. 50 с рис. 17, на котором показаны колебания тела на пружинах, то нетрудно установить большое сходство во всех стадиях процесса. Можно составить своего рода «словарь», с помощью которого описание электрических колебаний можно тотчас же перевести на описание механических, и обратно. Вот этот словарь.

Попробуйте перечитать предыдущий параграф с этим «словарем». В начальный момент конденсатор заряжен (тело отклонено), т. е. системе сообщен запас электрической (потенциальной) энергии. Начинает течь ток (тело приобретает скорость), через четверть периода ток и магнитная энергия наибольшие, а конденсатор разряжен, заряд на нем равен нулю (скорость тела и его кинетическая энергия наибольшие, причем тело проходит через положение равновесия), и т.д.

Заметим, что начальный заряд конденсатора и, следовательно, напряжение на нем создаются электродвижущей силой батареи. С другой стороны, начальное отклонение тела создается приложенной извне силой. Таким образом, сила, действующая на механическую колебательную систему, играет роль, аналогичную электродвижущей силе, действующей на электрическую колебательную систему. Наш «словарь» может быть поэтому дополнен еще одним «переводом»:

7) сила, 7) электродвижущая сила.

Сходство закономерностей обоих процессов идет и дальше. Механические колебания затухают из-за трения: при каждом колебании часть энергии превращается из-за трения в теплоту, поэтому амплитуда делается все меньше. Точно так же при каждой перезарядке конденсатора часть энергии тока переходит в теплоту, выделяющуюся из-за наличия сопротивления у провода катушки. Поэтому и электрические колебания в контуре тоже затухают. Сопротивление играет для электрических колебаний ту же роль, что трение для механических колебаний.

В 1853г. английский физик Вильям Томсон (лорд Кельвин, 1824-1907) показал теоретически, что собственные электрические колебания в контуре, состоящем из конденсатора емкости и катушки индуктивности , являются гармоническими, и период их выражается формулой

( - в генри, - в фарадах, - в секундах). Эта простая и очень важная формула называется формулой Томсона. Сами колебательные контуры с емкостью и индуктивностью часто тоже называют томсоновскими, так как Томсон впервые дал теорию электрических колебаний в таких контурах. В последнее время все чаще используется термин «-контур» (и аналогично «-контур», «-контур» и т. п.).

Сравнивая формулу Томсона с формулой, определяющей период гармонических колебаний упругого маятника (§ 9), , мы видим, что масса тела играет такую же роль, как индуктивность , а жесткость пружины - такую же роль, как величина, обратная емкости (). В соответствии с этим в нашем «словаре» вторую строку можно записать и так:

2) жесткость пружины 2) величина, обратная емкости конденсатора.

Подбирая разные и , можно получить любые периоды электрических колебаний. Естественно, в зависимости от периода электрических колебаний надо пользоваться различными способами их наблюдения и записи (осциллографирования). Если взять, например, и , то период будет

т. е. колебания будут происходить с частотой около . Это пример электрических колебаний, частота которых лежит в звуковом диапазоне. Такие колебания можно услышать при помощи телефона и записать на шлейфовом осциллографе. Электронный осциллограф позволяет получить развертку как таких, так и более высокочастотных колебаний. В радиотехнике используются чрезвычайно быстрые колебания - с частотами во много миллионов герц. Электронный осциллограф позволяет наблюдать их форму так же хорошо, как мы можем с помощью следа маятника на закопченной пластинке (§ 3) видеть форму колебаний маятника. Осциллографирование свободных электрических колебаний при однократном возбуждении колебательного контура обычно не применяется. Дело в том, что состояние равновесия в контуре устанавливается всего лишь за несколько периодов, или, в лучшем случае, за несколько десятков периодов (в зависимости от соотношения между индуктивностью контура , его емкостью и сопротивлением ). Если, скажем, процесс затухания практически заканчивается за 20 периодов, то в приведенном выше примере контура с периодам в вся вспышка свободных колебаний займет всего и уследить за осциллограммой при простом визуальном наблюдении будет весьма трудно. Задача легко решается, если весь процесс - от возбуждения колебаний до их практически полного угасания - периодически повторять. Сделав развертывающее напряжение электронного осциллографа тоже периодическим и синхронным с процессом возбуждения колебаний, мы заставим электронный пучок многократно «рисовать» одну и ту же осциллограмму на одном и том же месте экрана. При достаточно частом повторении наблюдаемая на экране картина вообще будет казаться непрерывающейся, т. е. мы усидим неподвижную и неизменную кривую, представление о которой дает рис. 49, б.

В схеме с переключателем, показанной на рис. 49, а, многократное повторение процесса можно получить просто, периодически перебрасывая переключатель из одного положения в другое.

Радиотехника располагает для этой же гораздо более совершенными и быстрым электрическими способами переключения, использующими схемы с электронными лампами. Но еще до изобретения электронных ламп был придуман остроумный способ периодического повторения возбуждения затухающих колебаний в контуре, основанный на использовании искрового заряда. Ввиду простоты и наглядности этого способа мы остановимся на нем несколько подробнее.

Рис. 51. Схема искрового возбуждения колебаний в контуре

Колебательный контур разорван небольшим промежутком (искровой промежуток 1), концы которого присоединены ко вторичной обмотке повышающего трансформатора 2 (рис. 51). Ток от трансформатора заряжает конденсатор 3 до тех пор, пока напряжение на искровом промежутке не станет равным напряжению пробоя (см. том II, §93). В этот момент в искровом промежутке происходит искровой разряд, который замыкает контур, так как столбик сильно ионизованного газа в канале искры проводит ток почти так же хорошо, как и металл. В таком замкнутом контуре возникнут электрические колебания, как это описано выше. Пока искровой промежуток хорошо проводит ток, вторичная обмотка трансформатора практически замкнута искрой накоротко, так что все напряжение трансформатора падает на его вторичной обмотке, сопротивление которой значительно больше сопротивления искры. Следовательно, при хорошо проводящем искровом промежутке трансформатор практически не доставляет энергии контуру. В силу того, что контур обладает сопротивлением, часть колебательное энергии расходуется на джоулево тепло, а также на процессы в искре, колебания затухают и через короткое время амплитуды тока и напряжения падают настолько, что искра гаснет. Тогда электрические колебания обрываются. С этого момента трансформатор вновь заряжает конденсатор, пока опять не произойдет пробой, и весь процесс повторится (рис. 52). Таким образом, образование искры и ее погасание играют роль автоматического переключателя, обеспечивающего повторение колебательного процесса.

Рис. 52. Кривая а) показывает, как меняется высокое напряжение на разомкнутой вторичной обмотке трансформатора. В те моменты, когда это напряжение достигает напряжения пробоя , в искровом промежутке проскакивает искра, контур замыкается, получается вспышка затухающих колебаний – кривые б)